Uniform Quotient Mappings of the Plane

W. B. JOHNSON, J. LINDENSTRAUSS, D. PREISS, & G. SCHECHTMAN

1. Introduction

Let *X* and *Y* be metric spaces. As is well known, a mapping $f: X \to Y$ is said to be *uniformly continuous* if there is a continuous increasing function $\Omega(r), r \ge 0$ with $\Omega(0) = 0$, so that $d(f(u), f(v)) \le \Omega(d(u, v))$ for all *u* and *v*; or, in other words, $f(B_r(x)) \subset B_{\Omega(r)}(f(x))$ for all $x \in X$ and r > 0. (We use $B_r(x)$ to denote the open ball with radius *r* and center *x* in the appropriate space.) The mapping *f* is called *co-uniformly continuous* if there is a continuous increasing function $\omega(r), r > 0$ with $\omega(r) > 0$ for r > 0, so that $B_{\omega(r)}(f(x)) \subset f(B_r(x))$. The continuity and monotonicity assumptions are made here for convenience and, if not assumed, can be achieved by changing the original functions $\Omega(r)$ and $\omega(r)$. The only necessary requirement is that the limit of $\Omega(r)$ is zero as $r \to 0$.

A surjective mapping f is said to be a *uniform quotient mapping* if it is uniformly continuous and co-uniformly continuous. In other words, f from X onto Y is a uniform quotient mapping if and only if $f \times f \colon X \times X \to Y \times Y$ maps the uniform neighborhoods of the diagonal in $X \times X$ onto the uniform neighborhoods of the diagonal in $Y \times Y$. Note that if $f: X \to Y$ is uniformly continuous and co-uniformly continuous then f (which of course is open) maps X to a closed set; hence the image of X is both closed and open. Consequently, if Y is connected then f is automatically surjective. Note also that if f is continuous and open and K is a compact subset of X, then for each r > 0 there is $\omega(r) > 0$ such that $B_{\omega(r)}(f(x)) \subset f(B_r(x))$ is satisfied for x in K. In particular, a continuous open mapping on a compact space is co-uniformly continuous. Finally, if fis uniformly continuous and co-uniformly continuous, then for all $Z \subset Y$ the restriction of f to $f^{-1}(Z)$, when considered as a mapping into Z, is also uniformly continuous and co-uniformly continuous; moreover, the image of every component of $f^{-1}(Z)$ is a component of Z provided that the balls of X are connected and $Z \subset f(X)$ is open. A discussion of the notion of co-uniform continuity and uniform quotient mappings (in the context of general uniform spaces) can be found in [J]. For normed spaces, the moduli always satisfy $\Omega(r) > Cr$ and $\omega(r) < cr$ for suitable C and c. If $\Omega(r) < Cr$ (more precisely, if Ω can be chosen to satisfy $\Omega(r) < Cr$ for some $0 < C < \infty$ and all r > 0, then we say that f is Lipschitz.

Received April 1, 1998. Revision received November 11, 1999.

The first author was supported in part by NSF DMS-9623260. The first, second, and fourth authors were supported in part by the U.S.–Israel Binational Science Foundation.