A New Characterization of Hyperellipticity

BERNARD MASKIT

1. Introduction

A (geodesic) *necklace* on a closed Riemann surface of genus $p \ge 2$ is a cyclically ordered set of 2p + 2 simple nondividing closed geodesics (in the hyperbolic metric) L_1, \ldots, L_{2p+2} , where each L_i intersects L_{i-1} exactly once, intersects L_{i+1} exactly once, and is otherwise disjoint from every other geodesic in the necklace. In this note we give a new characterization of hyperellipticity in terms of geodesic necklaces; this characterization is distinct from that given by Schmutz-Schaller [11]. We also give a geometric proof of Jørgensen's theorem [5], which states that, on a hyperbolic orbifold of dimension 2, there are infinitely many closed geodesics passing through every point of intersection of closed geodesics.

We denote the hyperbolic plane by \mathbb{H}^2 ; we will usually regard this as the upper half-plane. The group of all orientation preserving isometries of \mathbb{H}^2 can be canonically identified with PSL(2, \mathbb{R}), the group of real 2 × 2 matrices with unit determinant.

A discrete subgroup of $PSL(2, \mathbb{R})$ is *elementary* if it is a finite extension of a cyclic group. For our purposes, a Fuchsian group is a finitely generated non-elementary discrete subgroup of $PSL(2, \mathbb{R})$.

We will use the following notation throughout. Matrices in PSL(2, \mathbb{R}) are denoted by $\tilde{a}, \tilde{b}, \ldots$; the corresponding hyperbolic isometries are denoted by a, b, \ldots . If the transformation a is hyperbolic, its axis is denoted by A_a ; further, if a is a hyperbolic element of the discrete group G, then we denote by L_a the projection of A_a , which is a geodesic on \mathbb{H}^2/G .

Elliptic elements of order 2 are called *half-turns*. The fixed point of a half-turn in \mathbb{H}^2 is its *center* (or *vertex*). In general, for any group *H* and for any set *A*, the *stabilizer* of *A* in *H* is given by

$$\operatorname{Stab}(A) = \{h \in H \mid h(A) = A\}.$$

The author wishes to thank William Abikoff for several useful suggestions.

Received September 23, 1997. Revision received November 4, 1999.

Research supported in part by NSF grant DMS 9500557.