A New Characterization of Hyperellipticity

Bernard Maskit

1. Introduction

A (geodesic) necklace on a closed Riemann surface of genus $p \geq 2$ is a cyclically ordered set of $2 p+2$ simple nondividing closed geodesics (in the hyperbolic metric) $L_{1}, \ldots, L_{2 p+2}$, where each L_{i} intersects L_{i-1} exactly once, intersects L_{i+1} exactly once, and is otherwise disjoint from every other geodesic in the necklace. In this note we give a new characterization of hyperellipticity in terms of geodesic necklaces; this characterization is distinct from that given by Schmutz-Schaller [11]. We also give a geometric proof of Jørgensen's theorem [5], which states that, on a hyperbolic orbifold of dimension 2, there are infinitely many closed geodesics passing through every point of intersection of closed geodesics.

We denote the hyperbolic plane by \mathbb{H}^{2}; we will usually regard this as the upper half-plane. The group of all orientation preserving isometries of \mathbb{H}^{2} can be canonically identified with $\operatorname{PSL}(2, \mathbb{R})$, the group of real 2×2 matrices with unit determinant.

A discrete subgroup of $\operatorname{PSL}(2, \mathbb{R})$ is elementary if it is a finite extension of a cyclic group. For our purposes, a Fuchsian group is a finitely generated nonelementary discrete subgroup of $\operatorname{PSL}(2, \mathbb{R})$.

We will use the following notation throughout. Matrices in $\operatorname{PSL}(2, \mathbb{R})$ are denoted by $\tilde{a}, \tilde{b}, \ldots$; the corresponding hyperbolic isometries are denoted by a, b, \ldots. If the transformation a is hyperbolic, its axis is denoted by A_{a}; further, if a is a hyperbolic element of the discrete group G, then we denote by L_{a} the projection of A_{a}, which is a geodesic on \mathbb{H}^{2} / G.

Elliptic elements of order 2 are called half-turns. The fixed point of a half-turn in \mathbb{H}^{2} is its center (or vertex). In general, for any group H and for any set A, the stabilizer of A in H is given by

$$
\operatorname{Stab}(A)=\{h \in H \mid h(A)=A\} .
$$

The author wishes to thank William Abikoff for several useful suggestions.

[^0]
[^0]: Received September 23, 1997. Revision received November 4, 1999. Research supported in part by NSF grant DMS 9500557.

