# Height Formulas for Homogeneous Varieties 

Harry Tamvakis

Dedicated to my teacher, William Fulton

In this paper we use classical Schubert calculus to evaluate the integral formula of Kaiser and Köhler [KK] for the Faltings height of certain homogeneous varieties in terms of combinatorial data, and we verify their conjecture for the size of the denominators.

## 1. Introduction

Consider a system of diophantine equations with integral coefficients which defines an arithmetic variety $X$ in projective space $\mathbb{P}_{\mathbb{Z}}^{n}$. The Faltings height $h(X)$ of $X$ is a measure of the arithmetic complexity of the system; it is an arithmetic analog of the geometric notion of the degree of a projective variety. The height $h(X)$ generalizes the classical height of a rational point of projective space, used by Siegel [S], Northcott [N] and Weil [W] to study questions of diophantine approximation. Faltings [F] defined $h(X)$ using the arithmetic intersection theory of Gillet and Soulé [GS2]; if $\overline{\mathcal{O}}(1)$ denotes the canonical hermitian line bundle on $\mathbb{P}^{n}$, then the height

$$
h(X)=h_{\overline{\mathcal{O}}_{(1)}}(X)=\widehat{\operatorname{deg}}\left(\hat{c}_{1}(\overline{\mathcal{O}}(1))^{\operatorname{dim}(X)} \mid X\right)
$$

is the arithmetic degree of $X \subset \mathbb{P}^{n}$ with respect to $\overline{\mathcal{O}}(1)$. More generally, one has a notion of height of algebraic cycles with respect to hermitian line bundles; see [BGS, Sec. 3]. Our interest here is in explicit computations for these heights when $X=G / P$ is a homogeneous space of a Chevalley group $G$.

There are several alternative ways to identify the Faltings height $h(X)$. Although not as intrinsic as the above definition, they involve a more direct use of the equations in the system defining $X$. The approach by Philippon [ Ph ] uses an "alternative Mahler measure" of the Chow form of $X$. When $X$ is a hypersurface defined by a homogeneous polynomial $f \in \mathbb{Z}\left[z_{0}, \ldots, z_{n}\right]$, this gives

$$
\begin{equation*}
h(X)=\operatorname{deg}(f) h\left(\mathbb{P}^{n}\right)+\int_{S^{2 n+1}} \log |f(z)| d \sigma \tag{1}
\end{equation*}
$$

where $d \sigma$ denotes the $U(n+1)$-invariant probability measure on the unit sphere $S^{2 n+1}$ in $\mathbb{C}^{n+1}$; the Faltings height of projective space is given by

$$
\begin{equation*}
h\left(\mathbb{P}^{n}\right)=\frac{1}{2} \sum_{k=1}^{n} \mathcal{H}_{k} \tag{2}
\end{equation*}
$$

(see also [BGS, Sec. 3.3.1]). Here $\mathcal{H}_{k}=1+\frac{1}{2}+\cdots+\frac{1}{k}$ is a harmonic number.

[^0]
[^0]:    Received January 4, 2000. Revision received April 13, 2000.
    The author was supported in part by a National Science Foundation postdoctoral research fellowship.

