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In this paper we use classical Schubert calculus to evaluate the integral formula of
Kaiser and Köhler [KK] for the Faltings height of certain homogeneous varieties
in terms of combinatorial data, and we verify their conjecture for the size of the
denominators.

1. Introduction

Consider a system of diophantine equations with integral coefficients which de-
fines an arithmetic varietyX in projective spaceP nZ . The Faltings heighth(X) ofX
is a measure of the arithmetic complexity of the system; it is an arithmetic analog of
the geometric notion of the degree of a projective variety. The heighth(X)general-
izes the classical height of a rational point of projective space, used by Siegel [S],
Northcott [N] and Weil [W] to study questions of diophantine approximation.
Faltings [F] definedh(X) using the arithmetic intersection theory of Gillet and
Soulé [GS2]; ifSO(1) denotes the canonical hermitian line bundle onP n, then the
height

h(X) = h SO(1)(X) = d̂eg(ĉ1(SO(1))dim(X) | X)
is the arithmetic degree ofX ⊂ P n with respect toSO(1). More generally, one has
a notion of height of algebraic cycles with respect to hermitian line bundles; see
[BGS, Sec. 3]. Our interest here is in explicit computations for these heights when
X = G/P is a homogeneous space of a Chevalley groupG.

There are several alternative ways to identify the Faltings heighth(X).Although
not as intrinsic as the above definition, they involve a more direct use of the equa-
tions in the system definingX. The approach by Philippon [Ph] uses an “alterna-
tive Mahler measure” of the Chow form ofX. WhenX is a hypersurface defined
by a homogeneous polynomialf ∈Z[z0, . . . , zn], this gives

h(X) = deg(f )h(P n)+
∫
S2n+1

log|f(z)| dσ, (1)

wheredσ denotes theU(n + 1)-invariant probability measure on the unit sphere
S2n+1 in Cn+1; the Faltings height of projective space is given by

h(P n) = 1

2

n∑
k=1

Hk (2)

(see also [BGS, Sec. 3.3.1]). HereHk = 1+ 1
2 + · · · + 1

k
is aharmonic number.

Received January 4, 2000. Revision received April 13, 2000.
The author was supported in part by a National Science Foundation postdoctoral research fellowship.

593


