Fundamental Groups of Rationally Connected Varieties

János Kollár
Dedicated to William Fulton

1. Introduction

Let X be a smooth, projective, unirational variety, and let $U \subset X$ be an open set. The aim of this paper is to find a smooth rational curve $C \subset X$ such that the fundamental group of $C \cap U$ surjects onto the fundamental group of U. Following the methods of [K4] and [Co], a positive answer over \mathbb{C} translates to a positive answer over any p-adic field. This gives a rather geometric proof of the theorem of $[\mathrm{Hb}]$ about the existence of Galois covers of the line over p-adic fields (1.4). We also obtain a slight generalization of the results of $[\mathrm{Co}]$ about the existence of certain torsors over open subsets of the line over p-adic fields (1.6).

If $U=X$ then $\pi_{1}(X)$ is trivial (cf. (2.3)), thus any rational curve C will do. If $X \backslash U$ is a divisor with normal crossings and if C intersects every irreducible component of $X \backslash U$ transversally, then the normal subgroup of $\pi_{1}(U)$ generated by the image of $\pi_{1}(C \cap U)$ equals $\pi_{1}(U)$ by a simple argument. (See e.g. the beginning of (4.2).) It is also not hard to produce rational curves C such that the image of $\pi_{1}(C \cap U)$ has finite index in $\pi_{1}(U)$ (cf. (3.3)). These results suggest that we are very close to a complete answer, but surjectivity is not obvious. Differences between surjectivity and finiteness of the index appear in many similar situation; see, for instance, [K1, Part I] or [NR].

The present proof relies on the machinery of rationally connected varieties developed in the papers [KMM1; KMM2; KMM3]. The relevant facts are recalled in Section 2.

The main geometric result is the following theorem.
Theorem 1.1. Let K be an algebraically closed field of characteristic 0 , and let X be a smooth projective variety over K that is rationally connected (2.1). Let $U \subset X$ be an open subset and $x_{0} \in U$ a point. Then there is an open subset $0 \in$ $V \subset \mathbb{A}^{1}$ and a morphism $f: V \rightarrow U$ such that $f(0)=x_{0}$ and

$$
\pi_{1}(V, 0) \rightarrow \pi_{1}\left(U, x_{0}\right) \text { is surjective. }
$$

Moreover, we can assume that the following also hold:
(1) $H^{1}\left(\mathbb{P}^{1}, \bar{f}^{*} T_{X}(-2)\right)=0$, where $\bar{f}: \mathbb{P}^{1} \rightarrow X$ is the unique extension of f;
(2) \bar{f} is an embedding if $\operatorname{dim} X \geq 3$ and an immersion if $\operatorname{dim} X=2$.

