McMillan's Area Problem

Michael D. O'Neill \& Robert E. Thurman

1. Introduction

Let A denote the set of ideal accessible boundary points of a simply connected domain Ω. Recall that these are the finite radial limit points of the Riemann map from the unit disk onto Ω and that each radius along which the limit exists gives a distinct ideal boundary point. In particular, distinct ideal accessible boundary points may have the same complex coordinate. Fix $w_{0} \in \Omega$ and for each $a \in A$ and $r<\left|w_{0}-a\right|$ let $\gamma(a, r) \subset\{z:|z-a|=r\}$ be the circular crosscut of Ω separating a from w_{0} that can be joined to a by a Jordan arc contained in $\Omega \cap\{z$: $|z-a|<r\}$. Throughout this paper we will refer to $\gamma(a, r)$ as the principal separating arc for a of radius r.

Let $L(a, r)$ denote the Euclidean length of $\gamma(a, r)$ and let

$$
A(a, r)=\int_{0}^{r} L(a, \rho) d \rho
$$

In [5], McMillan showed that

$$
\limsup _{r \rightarrow 0} \frac{A(a, r)}{\pi r^{2}} \geq \frac{1}{2}
$$

almost everywhere on $\partial \Omega$ with respect to harmonic measure (denoted hereafter by a.e. $-\omega$).

The purpose of this paper is to prove Theorem A.
Theorem A.

$$
\liminf _{r \rightarrow 0} \frac{A(a, r)}{\pi r^{2}} \leq \frac{1}{2} \quad \text { a.e. }-\omega .
$$

This answers a question raised at the end of [5]. In an earlier paper [7], we proved the following theorem.

Theorem B.

$$
\liminf _{r \rightarrow 0} \frac{L(a, r)}{2 \pi r} \leq \frac{1}{2} \quad \text { a.e. }-\omega .
$$

This is also in answer to the last paragraph of [5]. Theorem A implies Theorem B but the basic idea of the proof is the same as in [7]. Let

