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Introduction

It is well known that a Riemannian foliation with minimal leaves has the property
that it produces harmonic morphisms, that is,its leaves are locally fibers of sub-
mersive harmonic morphisms.This is an immediate consequence of the fact that
Riemannian submersions with minimal fibers are harmonic morphisms.

More generally, a Riemannian foliation (of codimension not equal to 2) pro-
duces harmonic morphisms if and only if the vector field determined by the mean
curvatures of the leaves is locally a gradient vector field. This is a consequence
of the fundamental equation of Baird and Eells [1] (see Proposition 1.2 in the next
section). Although this condition is quite simple, few examples of such Riemann-
ian foliations were known; our work will provide many new ones.

For a 1-dimensional Riemannian foliation, the condition just stated is equiva-
lent to the fact that the foliation is locally generated by Killing fields (a result due
to Bryant [6]), but this is not true for foliations of dimension greater than 1. In this
paper we show that, for a foliation locally generated by Killing fields, the con-
dition depends only on the integrability tensor of the horizontal distribution and
the induced local action. Thus we obtain a useful criterion for a foliation locally
generated by Killing fields to produce harmonic morphisms. This is done in Sec-
tion 1 (Theorem1.13). In Section 2 we derive a few consequences, thus obtaining
the following classes of Riemannian foliations (of codimension6= 2) that produce
harmonic morphisms:

(a) foliations locally generated by Killing fields and with integrable orthogonal
complement;

(b) foliations generated by the local action of an abelian Lie group of isometries;
(c) foliations generated by the action of a unimodular closed subgroup of the

isometry group;
(d) foliations generated by the action of a Lie group of isometries whose orbits

are naturally reductive homogeneous Riemannian manifolds;
(e) foliations formed by the fibers of principal bundles for which the total space

is endowed with a metric such that the structural group acts as an isometry
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