On Elliptic K3 Surfaces

ICHIRO SHIMADA

1. Introduction

By virtue of Torelli's theorem for the period map on the moduli of complex K3 surfaces [4; 13; 18], we can study many aspects of K3 surfaces from the latticetheoretic point of view. In this paper, we determine all possible ADE-types of singular fibers of elliptic K3 surfaces using Nikulin's theory of discriminant forms of even integral lattices. We also determine, for each ADE-type of singular fibers, all possible torsion parts of the Mordell–Weil groups. Throughout this paper, we use the term "an elliptic K3 surface" for "a complex elliptic K3 surface with a distinguished zero section" and the term "an elliptic fibration" for "a complex Jacobian elliptic fibration".

A finite formal sum of the symbols A_l $(l \ge 1)$, D_m $(m \ge 4)$, and E_n (n = 6, 7, 8) with nonnegative integer coefficients is called an *ADE-type*. For an *ADE*-type

$$\Sigma := \sum a_l A_l + \sum d_m D_m + \sum e_n E_n,$$

we denote by $L(\Sigma)^-$ the negative definite root lattice generated by a root system of type Σ , and by rank(Σ) the rank of $L(\Sigma)^-$. By definition, we have rank(Σ) = $\sum a_l l + \sum d_m m + \sum e_n n$.

Let $f: X \to \mathbb{P}^1$ be an elliptic K3 surface, and let $O: \mathbb{P}^1 \to X$ be the zero section of f. Let MW_f be the Mordell–Weil group of f. The torsion part of MW_f is a finite abelian group, which we shall denote by G_f . We put

$$R_f := \{ p \in \mathbb{P}^1 \mid f^{-1}(p) \text{ is reducible } \}$$

and, for each $p \in R_f$, we denote by $f^{-1}(p)^{\sharp}$ the union of irreducible components of $f^{-1}(p)$ that are disjoint from the zero section. It is known that the cohomology classes of irreducible components of $f^{-1}(p)^{\sharp}$ span a negative definite root lattice generated by an indecomposable root system of type A_l , D_m , or E_n . Let $\tau_{f,p}$ be the type. The type of singular fiber $f^{-1}(p)$ in the list of Kodaira's classification [7] is related to $\tau_{f,p}$ in an almost one-to-one way (cf. Table 2.8). We define the *ADE*-type Σ_f of $f: X \to \mathbb{P}^1$ by

$$\Sigma_f := \sum_{p \in R_f} \tau_{f,p}.$$

Received July 9, 1999. Revision received July 28, 2000.