Boundary Values and Mapping Degree

Edgar Lee Stout

Introduction

This note is an addendum to the paper of Alexander and Wermer [2], in which the authors relate the theory of linking numbers to the question of finding an analytic variety bounded by a given real, odd-dimensional submanifold of \mathbb{C}^{N}.

We give a characterization of the boundary values of holomorphic functions on certain domains in \mathbb{C}^{N} in similar terms. In fact, the work of Alexander and Wermer contains such a characterization in the case of functions of class $\mathscr{C}{ }^{1}$. It seems that the methods used in [2] require this degree of smoothness, but we have found that it is possible to obtain a result that characterizes the continuous functions that are boundary values of holomorphic functions that is entirely in the spirit of [2]. Specifically, we shall prove the following result.

Main Theorem. Let Ω be a bounded domain in \mathbb{C}^{N} with boundary of class \mathscr{C}^{2}, and assume that $\bar{\Omega}$ has a Stein neighborhood basis. A continuous function f on $b \Omega$ is of the form $\left.F\right|_{b \Omega}$ for a function $F \in \mathscr{C}(\bar{\Omega})$ that is holomorphic on Ω if and only if the following condition is met.
(*) With Γ_{f} the graph $\{(z, f(z)): z \in b \Omega\}$, a compact subset of \mathbb{C}^{N+1}, if Q is $a \mathbb{C}^{N}$-valued holomorphic map defined on a neighborhood of $\bar{\Omega} \times \mathbb{C}$ with $Q^{-1}(0) \cap \Gamma_{f}=\emptyset$, then the degree of the map $b \Omega \rightarrow \mathbb{C}^{N} \backslash\{0\}$ given by $z \mapsto$ $Q(z, f(z))$ is nonnegative.

Recall that a closed set E in \mathbb{C}^{N} is said to have a Stein neighborhood basis if it is the intersection of a sequence of domains of holomorphy in \mathbb{C}^{N}. If E is the closure of a strictly pseudoconvex domain or a polydisc in \mathbb{C}^{N}, then it has a Stein neighborhood basis.

The case of the main theorem in which f is of class \mathscr{C}^{1} is contained in [2] as a very special case of the main results of that paper.

The main theorem seems to be new, even in the setting of classical function theory, where a version of the result is the following. Let \mathbb{U} denote the open unit disc in the complex plane.

Corollary. A continuous function f on $b \mathbb{U}$ extends holomorphically through \mathbb{U} if and only if, for each polynomial $p(z)=p\left(z_{1}, z_{2}\right)$ in two complex variables

