Boundary Values and Mapping Degree

Edgar Lee Stout

Introduction

This note is an addendum to the paper of Alexander and Wermer [2], in which the authors relate the theory of linking numbers to the question of finding an analytic variety bounded by a given real, odd-dimensional submanifold of \mathbb{C}^N .

We give a characterization of the boundary values of holomorphic functions on certain domains in \mathbb{C}^N in similar terms. In fact, the work of Alexander and Wermer contains such a characterization *in the case of functions of class* \mathscr{C}^1 . It seems that the methods used in [2] require this degree of smoothness, but we have found that it is possible to obtain a result that characterizes the *continuous* functions that are boundary values of holomorphic functions that is entirely in the spirit of [2]. Specifically, we shall prove the following result.

MAIN THEOREM. Let Ω be a bounded domain in \mathbb{C}^N with boundary of class \mathscr{C}^2 , and assume that $\overline{\Omega}$ has a Stein neighborhood basis. A continuous function f on $b\Omega$ is of the form $F|_{b\Omega}$ for a function $F \in \mathscr{C}(\overline{\Omega})$ that is holomorphic on Ω if and only if the following condition is met.

(*) With Γ_f the graph $\{(z, f(z)) : z \in b\Omega\}$, a compact subset of \mathbb{C}^{N+1} , if Q is a \mathbb{C}^N -valued holomorphic map defined on a neighborhood of $\overline{\Omega} \times \mathbb{C}$ with $Q^{-1}(0) \cap \Gamma_f = \emptyset$, then the degree of the map $b\Omega \to \mathbb{C}^N \setminus \{0\}$ given by $z \mapsto Q(z, f(z))$ is nonnegative.

Recall that a closed set E in \mathbb{C}^N is said to have a Stein neighborhood basis if it is the intersection of a sequence of domains of holomorphy in \mathbb{C}^N . If E is the closure of a strictly pseudoconvex domain or a polydisc in \mathbb{C}^N , then it has a Stein neighborhood basis.

The case of the main theorem in which f is of class \mathscr{C}^1 is contained in [2] as a very special case of the main results of that paper.

The main theorem seems to be new, even in the setting of classical function theory, where a version of the result is the following. Let \mathbb{U} denote the open unit disc in the complex plane.

COROLLARY. A continuous function f on $b\mathbb{U}$ extends holomorphically through \mathbb{U} if and only if, for each polynomial $p(z) = p(z_1, z_2)$ in two complex variables

Received November 12, 1999.