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1. Introduction and Statement of Results

In this paper we give a multifractal description of the Patterson measureµ sup-
ported on the limit setL(G) of a geometrically finite Kleinian groupG with par-
abolic elements. More precisely, we estimate theweak singularity spectraof µ,
which means that forθ > 0 we determine the Hausdorff dimensions of the fol-
lowing sets:

I θ(µ) :=
{
ξ ∈L(G) : lim inf

r→0

logµ(B(ξ, r))

logr
≤ θ

}
,

I θ (µ) :=
{
ξ ∈L(G) : lim inf

r→0

logµ(B(ξ, r))

logr
≥ θ

}
,

S θ(µ) :=
{
ξ ∈L(G) : lim sup

r→0

logµ(B(ξ, r))

logr
≤ θ

}
,

Sθ (µ) :=
{
ξ ∈L(G) : lim sup

r→0

logµ(B(ξ, r))

logr
≥ θ

}
,

whereB(ξ, r) denotes the Euclidean ball of radiusr centered atξ.
This “weak multifractal analysis” of the Patterson measure will be based on a

further investigation of the Hausdorff dimension dimH (Jσ(G)) of the associated
σ -Jarník limit setsJσ(G) ⊂ L(G), which represent the natural generalization of
the well-approximable real numbers to the theory of Kleinian groups(Jσ(G) is
defined at the end of this section).

In [12] we derived a complete description ofJσ(G) in terms of the dimension
with respect toµ. As a consequence, we were able to determine dimH (Jσ(G)) for
those cases in which dimH (L(G)) does not exceed the maximal rank of the para-
bolic fixed points ofG. The first aim of this paper will be to show how to modify
the construction in [12] in order to deal with the remaining cases. That is, based
on the construction in [12], we compute dimH (Jσ(G)) for all geometrically finite
Kleinian groups with parabolic elements. We then discuss how these estimates
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