Green's Functions for Irregular Quadratic Polynomial Automorphisms of \mathbb{C}^3

DAN COMAN & JOHN ERIK FORNÆSS

1. Introduction

We first recall some basic facts about the dynamics of (holomorphic) polynomial automorphisms of \mathbb{C}^2 . It was shown in [FM] that the ones with interesting dynamics are affinely conjugated to a finite composition of generalized Hénon maps—that is, maps of the form $(x, y) \rightarrow (P(x) - ay, x)$, where *P* is a holomorphic polynomial in \mathbb{C} . The dynamics of such maps is studied in detail in a sequence of papers by Bedford and Smillie, starting with [BS], in [FS], and also in [H].

For simplicity, let us refer to the case of one generalized Hénon map, h(x, y) = (P(x) - ay, x), where *P* has degree $d \ge 2$. There are two posibilities: either the forward iterates h^n of *h* can escape to infinity at super-exponential rate $(\sim (\text{const})^{d^n})$ or they are locally uniformly bounded. The first situation occurs on an open set U^+ and the second on the complement $K^+ = \mathbb{C}^2 \setminus U^+$. Then the Fatou set of *h*, defined in the usual sense as the largest open set on which the iterates $\{h^n\}$ form a normal family, is given by $U^+ \cap \text{int } K^+$, while the Julia set is ∂K^+ . Similar statements hold for the inverse map h^{-1} , the corresponding sets being denoted by U^- and K^- . Using these facts, one defines (pluricomplex) Green's functions which measure the (super-exponential) rate of escape to infinity in forward/backward time:

$$G^{\pm}(w) = \lim_{n \to \infty} \frac{1}{d^n} \log^+ ||h^{\pm n}(w)||,$$

where $w = (x, y) \in \mathbb{C}^2$. These functions are continuous plurisubharmonic on \mathbb{C}^2 and actually pluriharmonic on U^+ (resp. on U^-). Moreover, $K^{\pm} = \{G^{\pm} = 0\}$. The Green's functions are used to define the currents $\mu^{\pm} = dd^c G^{\pm}$, supported on ∂K^{\pm} , which satisfy $h^*\mu^{\pm} = d^{\pm 1}\mu^{\pm}$ (here $d^c = \frac{1}{2\pi i}(\partial - \overline{\partial})$). It follows that $\mu = \mu^+ \wedge \mu^-$ is a probability measure supported on $\partial K^+ \cap \partial K^-$, which is invariant under *h*. The currents μ^{\pm} and the invariant measure μ are important tools in understanding the dynamics of *h*.

It is an interesting problem to study the dynamics of polynomial automorphisms of \mathbb{C}^N in dimensions higher than 2. To our knowledge, there are only a few attempts in this direction, which we briefly recall now. The theory of Hénon maps in \mathbb{C}^2 carries over to the special class of shift-like polynomial automorphisms of \mathbb{C}^N , which are introduced and studied in [BP].

Received September 17, 1998. Revision received May 20, 1999. Michigan Math. J. 46 (1999).