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1. Introduction

In relativistic quantum mechanics, the problem of the unphysical negative-energy
solutions of the Dirac equation is solved by the conception that all negative-energy
states are occupied in the vacuum forming the so-called Dirac sea. In [1], the Dirac
sea was constructed for the Dirac equation with general interaction in terms of a
formal power series in the external potential. In the present paper, we turn our
attention to a single Feynman diagram of this perturbation expansion. More pre-
cisely, we will analyze the contribution to first order in the potential and derive
explicit formulas for the Dirac sea in position space. Since this analysis does not
require a detailed knowledge of the perturbation expansion for the Dirac sea, we
can make this paper self-consistent by giving a brief introduction to the mathe-
matical problem.

In the vacuum, the Dirac sea is characterized by the integral over the lower mass
shell

P(x, y) =
∫

d 4p

(2π)4
( 6p +m) δ(p2 −m2)2(−p0)e−ip(x−y) (1.1)

(2 is the Heavyside function,2(x) = 1 for x ≥ 0 and2(x) = 0 other-
wise); P(x, y) is a tempered distribution that solves the free Dirac equation
(i6 ∂x −m)P(x, y) = 0. In the case with interaction, the Dirac sea is accordingly
described by a tempered distributionP̃(x, y) being a solution of the Dirac equation

(i6 ∂x + B(x)−m)P̃(x, y) = 0, (1.2)

whereB is composed of the classical bosonic potentials. We assumeB to be a
4× 4 matrix potential satisfying the conditionγ 0B(x)†γ 0 = B(x) (“ †” denotes
the transposed, complex conjugated matrix). We can thus decompose it in the form

B = e6A+ eγ 56B +8+ iγ 54+ σjkHjk (1.3)

with the electromagnetic potentialAj, an axial potentialBj, scalar and pseudo-
scalar potentials8 and4, and a bilinear potentialHjk (see e.g. [7] for a discussion
of these potentials). In Appendix B, it is shown how the results can be extended
to an external gravitational field.
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