Expanding Factors for Pseudo-Anosov Homeomorphisms

E. RYKKEN

1. Introduction and Definitions

Thurston classified homeomorphisms on compact surfaces up to isotopy (see [3; 5]). He showed that any homeomorphism on a compact surface may be decomposed into simpler homeomorphisms on simpler compact surfaces. These simpler homeomorphisms are either periodic or pseudo-Anosov. Here we study the dynamics of the pseudo-Anosov homeomorphisms, because they are much more complicated and much richer than those of the periodic ones. In addition, pseudoAnosov homeomorphisms on compact surfaces can be thought of as a natural extension of the study of hyperbolic toral automorphisms on the 2-dimensional torus. Using the Markov matrix, Markov partitions of these maps allow us to make a natural association with symbolic dynamics.

In the first section, we recall the basic definitions and background theorems. The second section provides several examples of pseudo-Anosov homeomorphisms on the two-dimensional sphere. In the final section, using tools from algebraic topology, we prove the following theorem, which extends a theorem concerning hyperbolic toral automorphisms on \mathbb{T}^{2} [14].

Theorem 3.3. Let $f: M \rightarrow M$ be a pseudo-Anosov homeomorphism on an orientable surface of genus g with oriented unstable manifolds. Let \mathcal{P} be a Markov partition for f with Markov matrix \mathcal{A}. If f preserves the orientation of unstable manifolds, then the eigenvalues of $f_{* 1}: H_{1}(M ; \mathbb{R}) \rightarrow H_{1}(M ; \mathbb{R})$ are the same as those of \mathcal{A} including multiplicity, with the possible exception of some zeros and roots of unity.

Hence, the expanding factor λ is an eigenvalue of $f_{* 1}: H_{1}(M ; \mathbb{R}) \rightarrow H_{1}(M ; \mathbb{R})$. Similarly, if f reverses the orientation of unstable manifolds, then the eigenvalues of $f_{* 1}: H_{1}(M ; \mathbb{R}) \rightarrow H_{1}(M ; \mathbb{R})$ are the same as those of $-\mathcal{A}$ including multiplicity, with the possible exception of some zeros and roots of unity. Hence $-\lambda$ is an eigenvalue of $f_{* 1}: H_{1}(M ; \mathbb{R}) \rightarrow H_{1}(M ; \mathbb{R})$. As a consequence of this theorem, we have the following corollary.

Corollary 3.8. Let λ be the expanding factor of a pseudo-Anosov homeomorphism f. If λ is the root of an irreducible quadratic equation over the rationals, then λ satisfies a quadratic of the form $x^{2}+n x \pm 1$, where $n \in \mathbb{Z}$ and $|\lambda| \neq 1$.

Received May 18, 1998. Revision received January 8, 1999.
Michigan Math. J. 46 (1999).

