On Boundary Regularity of Analytic Discs

EVGENI M. CHIRKA, BERNARD COUPET, & Alexandre B. Sukhov

1. Introduction

In this paper we study the boundary behavior of analytic discs near the zero set of a nonnegative plurisubharmonic function or a totally real submanifold of \mathbb{C}^n .

Our main result is the following.

THEOREM 1.1. Let Ω be a complex manifold, ρ a plurisubharmonic function in Ω , and $f: \Delta \to \Omega$ a holomorphic map of the unit disc $\Delta \subset \mathbb{C}$ into Ω such that $\rho \circ f \geq 0$ and $\rho \circ f(\zeta) \to 0$ as $\zeta \in \Delta$ tends to an open arc $\gamma \subset \partial \Delta$. Assume that, for a certain point $a \in \gamma$, the cluster set C(f, a) contains a point $p \in \Omega$ such that ρ is strictly plurisubharmonic in a neighborhood of p. Then f extends to a Hölder 1/2-continuous mapping in a neighborhood of a on $\Delta \cup \gamma$. If, moreover, $\rho \geq 0$ and the function ρ^{θ} is plurisubharmonic in a neighborhood of p for some $\theta \in [1/2, 1]$, then f is Hölder 1/2 θ -continuous (Lipschitz, if $\theta = 1/2$) in a neighborhood of a on $\Delta \cup \gamma$.

Although this result is new even in the case when the function ρ is of class C^{∞} , we note that ρ is supposed only to be upper semicontinuous. In what follows we write p.s.h. for plurisubharmonic. A function ρ is called *strictly* p.s.h. in a neighborhood of p with local coordinates z if, for some $\varepsilon > 0$, the function $\rho - \varepsilon |z|^2$ is p.s.h. in a neighborhood of p; ρ is called strictly p.s.h. in Ω if it is strictly p.s.h. at each point of Ω .

It seems that the assertion of Theorem 1.1 is new even in the case when Ω is a domain in the complex plane \mathbb{C} (i.e., *f* is a usual holomorphic function in Δ). Some comments on the conditions of the theorem may be listed as follows.

(1) The manifold Ω cannot be arbitrary because of the existence condition of the described function ρ . For instance, it implies that all the manifolds $\Omega \cap \{\rho < c\}$, c > 0, are hyperbolic at the point p by a theorem of Sibony [14].

(2) It is enough to assume that ρ is p.s.h. in a neighborhood of its zero set only. Then, replacing Ω by this neighborhood and f by $f \circ \phi$ where $\phi \colon \Delta \to V \cap \Delta$ is a conformal mapping for a suitable neighborhood $V \supset \gamma$, we are in the setting of the theorem.

(3) If f is known to be continuous at the point a, then the situation becomes purely local and we can work with Ω as a domain in \mathbb{C}^n . But one of the essential

Received April 16, 1998. Revision received March 18, 1999.

Michigan Math. J. 46 (1999).