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1. Introduction

LetA = K[x1, . . . , xn] be a polynomial ring over a fieldK,and letR = A/I be the
quotient ofA by an idealI ⊂ A that is homogeneous with respect to the standard
grading in which deg(xi) = 1. WhenI is generated by square-free monomials, it
is traditional to associate with it a certain simplicial complex1, for whichI = I1
is theStanley–Reisner idealof 1 andR = K[1] = A/I1 is theStanley–Reisner
ring or face ring.The definition of1 as a simplicial complex on vertex set [n] :=
{1,2, . . . , n} is straightforward: the minimal non-faces of1 are defined to be the
supports of the minimal square-free monomial generators ofI.

Many of the ring-theoretic properties ofI1 then translate into combinatorial
and topological properties of1 (see [14, Chap.II]). In particular, a celebrated
formula of Hochster [14, Thm. II.4.8] describes TorA

··· (R,K) in terms of the ho-
mology of the full subcomplexes of1. HereK is considered the trivialA-module
K = A/m for m = (x1, . . . , xn). It is well known that the dimensions of these
K-vector spaces TorA··· (R,K) give the ranks of the resolvents in the finite minimal
free resolution ofR as anA-module.

In a series of recent papers, beginning with [8] and subsequently [9; 15; 13], it
has been recognized that, for square-free monomial idealsI = I1, there is another
simplicial complex1∗ which can be even more convenient for understanding free
A-resolutions ofR. The complex1∗, which from now on we will call theEagon
complexof I = I1, carries equivalent information to1 and is, in a certain sense,
its canonical Alexander dual:

1∗ := {F ⊆ [n] : [n] − F /∈1 }.
The crucial property of1∗ that makes it convenient for the study of TorA

··· (R,K)
is that, instead of the full subcomplexes of1 that are relevant in Hochster’s for-
mula, the relevant subcomplexes of1∗ are thelinksof its faces. Therefore, various
hypotheses on1∗ which are inherited by the links of faces, or which control the
topology of these links, lead to strong consequences for TorA

··· (R,K) (see Sec-
tion 3).
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