Componentwise Linear Ideals and Golod Rings

J. Herzog, V. Reiner, \& V. Welker

Dedicated to Jack Eagon on the occasion of his 65th birthday

1. Introduction

Let $A=K\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring over a field K, and let $R=A / I$ be the quotient of A by an ideal $I \subset A$ that is homogeneous with respect to the standard grading in which $\operatorname{deg}\left(x_{i}\right)=1$. When I is generated by square-free monomials, it is traditional to associate with it a certain simplicial complex Δ, for which $I=I_{\Delta}$ is the Stanley-Reisner ideal of Δ and $R=K[\Delta]=A / I_{\Delta}$ is the Stanley-Reisner ring or face ring. The definition of Δ as a simplicial complex on vertex set $[n]:=$ $\{1,2, \ldots, n\}$ is straightforward: the minimal non-faces of Δ are defined to be the supports of the minimal square-free monomial generators of I.

Many of the ring-theoretic properties of I_{Δ} then translate into combinatorial and topological properties of Δ (see [14, Chap. II]). In particular, a celebrated formula of Hochster [14, Thm. II.4.8] describes Tor. ${ }^{A}(R, K)$ in terms of the homology of the full subcomplexes of Δ. Here K is considered the trivial A-module $K=A / \mathfrak{m}$ for $\mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right)$. It is well known that the dimensions of these K-vector spaces Tor. ${ }^{A}(R, K)$ give the ranks of the resolvents in the finite minimal free resolution of R as an A-module.

In a series of recent papers, beginning with [8] and subsequently [9;15; 13], it has been recognized that, for square-free monomial ideals $I=I_{\Delta}$, there is another simplicial complex Δ^{*} which can be even more convenient for understanding free A-resolutions of R. The complex Δ^{*}, which from now on we will call the Eagon complex of $I=I_{\Delta}$, carries equivalent information to Δ and is, in a certain sense, its canonical Alexander dual:

$$
\Delta^{*}:=\{F \subseteq[n]:[n]-F \notin \Delta\} .
$$

The crucial property of Δ^{*} that makes it convenient for the study of $\operatorname{Tor}{ }^{A}(R, K)$ is that, instead of the full subcomplexes of Δ that are relevant in Hochster's formula, the relevant subcomplexes of Δ^{*} are the links of its faces. Therefore, various hypotheses on Δ^{*} which are inherited by the links of faces, or which control the topology of these links, lead to strong consequences for $\operatorname{Tor}^{A}(R, K)$ (see Section 3).

[^0]
[^0]: Received October 15, 1997. Revision received March 25, 1999.
 The second author was supported by Sloan Foundation and University of Minnesota McKnight-Land Grant Fellowships. The third author was supported by Deutsche Forschungsgemeinschaft (DFG). Michigan Math. J. 46 (1999).

