Configurations of Linear Subspaces and Rational Invariants

DMITRI ZAITSEV

1. Introduction

Let $Gr_{n,d}(\mathbb{C})$ denote the Grassmannian of all d-dimensional linear subspaces in \mathbb{C}^n , and let $GL_n(\mathbb{C}) \times (Gr_{n,d}(\mathbb{C}))^s \to (Gr_{n,d}(\mathbb{C}))^s$ be the canonical diagonal action. Dolgachev [DB] posed the following question:

Is the quotient $\operatorname{Gr}_{n,2}(\mathbb{C})^s/\operatorname{GL}_n(\mathbb{C})$ (e.g., in the sense of Rosenlicht) always rational?

Recall that a Rosenlicht quotient of an algebraic variety X acted on by an algebraic group G is an algebraic variety V together with a rational map $X \to V$ whose generic fibers coincide with the G-orbits. Such quotients always exist and are unique up to birational isomorphisms [R]. In the sequel all quotients will be assumed of this type. An algebraic variety Q is rational if it is birationally equivalent to \mathbb{P}^m with $m = \dim Q$.

We answer the above question in the affirmative by applying the rationality of the quotient $(GL_2(\mathbb{C}))^2/GL_2(\mathbb{C})$, where $GL_2(\mathbb{C})$ acts diagonally by conjugations (see [P1] and surveys [B; D]).

THEOREM 1.1. For all positive integers n and s, the quotient $(\operatorname{Gr}_{n,2}(\mathbb{C}))^s/\operatorname{GL}_n(\mathbb{C})$ is rational. Equivalently, the field of rational $\operatorname{GL}_n(\mathbb{C})$ -invariants on $(\operatorname{Gr}_{n,2}(\mathbb{C}))^s$ is pure transcendental.

The statement of Theorem 1.1 has been recently proved by Megyesi [M] in the case n = 4 and by Dolgachev and Boden [DB] in the case of odd n. Their proofs are independent of the present one.

More generally, we show the birational equivalence between $(Gr_{n,d}(\mathbb{C}))^s/GL_n(\mathbb{C})$ and certain quotients of matrix spaces. Let $GL_n(\mathbb{C}) \times (GL_n(\mathbb{C}))^s \to (GL_n(\mathbb{C}))^s$ be the action defined by $(g, M_1, \ldots, M_s) \mapsto (gM_1g^{-1}, \ldots, gM_sg^{-1})$. The first main result of the present paper consists of the following two statements.

THEOREM 1.2.

(1) Let s and d be arbitrary positive integers, and let n = rd for some integer r > 1. Then $(Gr_{n,d}(\mathbb{C}))^s/GL_n(\mathbb{C})$ is birationally equivalent to $(GL_d(\mathbb{C}))^k/GL_d(\mathbb{C})$, where

Received August 3, 1998. Revision received December 14, 1998. Michigan Math. J. 46 (1999).