Pluripolar Hulls

Norman Levenberg & Evgeny A. Poletsky

1. Introduction

Let *E* be a pluripolar set in \mathbb{C}^N . That is, for each $z_0 \in E$, there exists a neighborhood *U* of z_0 and a plurisubharmonic (psh) function $u \not\equiv -\infty$ on *U* with

$$E \cap U \subset \{z \in U : u(z) = -\infty\}.$$

From the well-known result of Josefson (cf. [K, Thm. 4.7.4]), there exists a plurisubharmonic function u on \mathbb{C}^N , $u \not\equiv -\infty$, with $E \subset \{z \in D : u(z) = -\infty\}$. For example, if f is holomorphic in an open set D, then

$$E := \{z \in D : f(z) = 0\} = \{z \in D : u(z) := \log |f(z)| = -\infty\}$$

is pluripolar. It can happen that any psh function u that is $-\infty$ on a pluripolar set $E \subset D$ is automatically $-\infty$ on a larger set. As a simple example, if

$$E = \{ z \in \mathbb{C}^N : |z_1| < 1, z_2 = \dots = z_N = 0 \},$$

then any globally defined psh function u that is $-\infty$ on E must be $-\infty$ on

$$E^* = \{ z \in \mathbb{C}^N : z_1 \in \mathbb{C}, z_2 = \dots = z_N = 0 \}.$$

This follows since $U(z_1) := u(z_1, 0, ..., 0)$ is subharmonic on \mathbb{C} and $-\infty$ on the *nonpolar* set $\{z_1 \in \mathbb{C} : |z_1| < 1\}$. To describe this phenomenon of "propagation" of pluripolar sets more concretely, given a pluripolar set E in \mathbb{C}^N and a neighborhood D of E, we define two types of *pluripolar hulls* of E relative to D:

$$E_D^* := \bigcap \{ z \in D : u(z) = -\infty \},$$

where the intersection is taken over all psh functions in D that are $-\infty$ on E; and

$$E_D^- := \bigcap \{ z \in D : u(z) = -\infty \},$$

where the intersection is taken over all *negative* psh functions in D that are $-\infty$ on E. Clearly, $E_D^* \subset E_D^-$ and if $E \subset D_1 \subset \subset D_2$ then

$$E_{D_1}^- \subset E_{D_2}^* \cap D_1$$
.

Received March 24, 1998. Revision received October 19, 1998.

N. Levenberg was partially supported by the Marsden Fund (NZ) and E. A. Poletsky by NSF grant DMS-9804755.

Michigan Math. J. 46 (1999).