Homology of Real Algebraic Fiber Bundles Having Circle as Fiber or Base

Yildiray Ozan

1. Introduction

For real algebraic sets $X \subseteq \mathbb{R}^{r}$ and $Y \subseteq \mathbb{R}^{s}$, a map $F: X \rightarrow Y$ is said to be entire rational if there exist $f_{i}, g_{i} \in \mathbb{R}\left[x_{1}, \ldots, x_{r}\right], i=1, \ldots, s$, such that each g_{i} vanishes nowhere on X and $F=\left(f_{1} / g_{1}, \ldots, f_{s} / g_{s}\right)$. We say X and Y are isomorphic to each other if there are entire rational maps $F: X \rightarrow Y$ and $G: Y \rightarrow X$ such that $F \circ G=\mathrm{id}_{Y}$ and $G \circ F=\mathrm{id}_{X}$. A complexification $X_{\mathbb{C}} \subseteq \mathbb{C P}^{N}$ of X will mean that X is a nonsingular algebraic subset of some $\mathbb{R P}^{N}$ and $X_{\mathbb{C}} \subseteq \mathbb{C P}^{N}$ is the complexification of the pair $X \subseteq \mathbb{R P}^{N}$. We also require the complexification to be nonsingular (blow up $X_{\mathbb{C}}$ along smooth centers away from X defined over reals if necessary). For basic definitions and facts about real algebraic geometry, we refer the reader to $[2 ; 4]$. Let $K H_{*}(X, R)$ be the kernel of the induced map

$$
i_{*}: H_{*}(X, R) \rightarrow H_{*}\left(X_{\mathbb{C}}, R\right)
$$

on homology, where $i: X \rightarrow X_{\mathbb{C}}$ is the inclusion map and R is either \mathbb{Z} or a field. In [16] it is shown that $K H_{*}(X, R)$ is independent of the complexification $X \subseteq$ $X_{\mathbb{C}}$. All compact manifolds and nonsingular real or complex algebraic sets are R oriented so that Poincaré duality and intersection of homology classes are defined.

In this note, X will be mostly the total space of a fiber bundle and we will study $K H_{*}(X, R)$. In the next section the fiber will be S^{1} and in the third section the base space will be S^{1}. As an application we will prove a result of Kulkarni that a compact homogeneous manifold M has an algebraic model X with [X] zero in $H_{n}\left(X_{\mathbb{C}} ; \mathbb{Z}\right)$ if and only if M has zero Euler characteristic. (Kulkarni [10, Cor. 4.6, Thm. 5.1] proved this for rational coefficients.) In Section 4 we will consider entire rational maps $f: X \rightarrow Y$ and compare $K H_{k}(X, R)$ and $K H_{k}(Y, R)$ via f in case X and Y have the same dimension. Results will be proved in the last section.

2. Bundles with Circle Fibers

On any compact Lie group there is a unique real algebraic structure compatible with the group operations [12]. Let G be such a group endowed with its unique real algebraic structure. An action of G on X is said to be algebraic if the action

