The Bergman Kernel on Monomial Polyhedra

CHIEH-HSIEN TIAO

0. Introduction

In order to understand the Bergman kernel for a complex domain Ω in \mathbb{C}^n at z close to the boundary $\partial\Omega$, we usually insert the biholomorphic image of a polydisc \mathcal{D} centered at z in Ω to generate the upper bound for the Bergman kernel on Ω :

$$K_{\Omega}(z,z) \leq K_{\mathcal{D}}(z,z) = \frac{1}{\operatorname{Vol}(\mathcal{D})}.$$

On the other hand, Catlin [3] showed by using a $\bar{\partial}$ estimate that, on a finite type pseudoconvex domain Ω in \mathbb{C}^2 , there exists a polydisc \mathcal{D} such that

$$K_{\Omega}(z,z) \ge c \cdot \frac{1}{\text{Vol}(\mathcal{D})};$$

the same formula was later shown by McNeal [8] on convex domains in \mathbb{C}^n . A question arises: Are polydiscs enough to describe the Bergman kernel for smooth bounded domains?

For a general domain in \mathbb{C}^n , it is not always possible to find a polydisc D that models the domain. Consider $\Omega \subset \mathbb{C}^3$ defined by $|z_1|^{10} + |z_2|^{10} + |z_1z_2|^2 + |z_3|^2 < 1$, and let $z = (0, 0, 1 - \varepsilon)$. It is easy to show that all polydiscs centered at z in Ω have maximal volume of approximately ε^4 ; thus, the upper bound of the Bergman kernel at z obtained by inserting polydiscs is roughly ε^{-4} . But consider a Reinhardt domain \mathcal{R} centered at z bounded by $|z_1| < 1$, $|z_2| < 1$, $|z_3 - (1 - \varepsilon)| < \varepsilon/2$, and $|z_1z_2| < \varepsilon/2$. The volume of \mathcal{R} is roughly $\varepsilon^4(-\log \varepsilon + 1)$, which is much larger than ε^4 when $\varepsilon \ll 1$; therefore, the upper bound at z given by \mathcal{R} is $1/\varepsilon^4(-\log \varepsilon + 1)$, much smaller than the ones given by any polydiscs.

The preceding example shows that polydiscs do not provide a good enough way of estimating upper bounds for the Bergman kernel. Instead of trying to fit a polydisc \mathcal{D} about the point z into Ω , it seems better to try to fit the largest "monomial polyhedron" P about z into Ω , where a monomial polyhedron P associated with a finite subcollection \mathcal{B} of index space \mathcal{N}^n , $\mathcal{N} = \mathbb{N} \cup \{0\}$, is defined as follows.

DEFINITION 1.1. A domain P in \mathbb{C}^n is a monomial polyhedron if there exists a subset $\mathcal{B} = \{\alpha_1, \ldots, \alpha_m\}$ of \mathcal{N}^n and, for each $\alpha \in \mathcal{B}$, there exists a unique $C_\alpha \in \mathbb{R}$ such that $P = P(\mathcal{B}) = \{z \in \mathbb{C}^n : |z^\alpha| < e^{C_\alpha}, \alpha \in \mathcal{B}\}.$

Received October 23, 1997. Revision received July 22, 1998. Michigan Math. J. 46 (1999).