The Bergman Kernel on Monomial Polyhedra

Chieh-Hsien Tiao

0. Introduction

In order to understand the Bergman kernel for a complex domain Ω in \mathbb{C}^{n} at z close to the boundary $\partial \Omega$, we usually insert the biholomorphic image of a polydisc \mathcal{D} centered at z in Ω to generate the upper bound for the Bergman kernel on Ω :

$$
K_{\Omega}(z, z) \leq K_{\mathcal{D}}(z, z)=\frac{1}{\operatorname{Vol}(\mathcal{D})}
$$

On the other hand, Catlin [3] showed by using a $\bar{\partial}$ estimate that, on a finite type pseudoconvex domain Ω in \mathbb{C}^{2}, there exists a polydisc \mathcal{D} such that

$$
K_{\Omega}(z, z) \geq c \cdot \frac{1}{\operatorname{Vol}(\mathcal{D})}
$$

the same formula was later shown by McNeal [8] on convex domains in \mathbb{C}^{n}. A question arises: Are polydiscs enough to describe the Bergman kernel for smooth bounded domains?

For a general domain in \mathbb{C}^{n}, it is not always possible to find a polydisc D that models the domain. Consider $\Omega \subset \mathbb{C}^{3}$ defined by $\left|z_{1}\right|^{10}+\left|z_{2}\right|^{10}+\left|z_{1} z_{2}\right|^{2}+\left|z_{3}\right|^{2}<$ 1 , and let $z=(0,0,1-\varepsilon)$. It is easy to show that all polydiscs centered at z in Ω have maximal volume of approximately ε^{4}; thus, the upper bound of the Bergman kernel at z obtained by inserting polydiscs is roughly ε^{-4}. But consider a Reinhardt domain \mathcal{R} centered at z bounded by $\left|z_{1}\right|<1,\left|z_{2}\right|<1,\left|z_{3}-(1-\varepsilon)\right|<$ $\varepsilon / 2$, and $\left|z_{1} z_{2}\right|<\varepsilon / 2$. The volume of \mathcal{R} is roughly $\varepsilon^{4}(-\log \varepsilon+1)$, which is much larger than ε^{4} when $\varepsilon \ll 1$; therefore, the upper bound at z given by \mathcal{R} is $1 / \varepsilon^{4}(-\log \varepsilon+1)$, much smaller than the ones given by any polydiscs.

The preceding example shows that polydiscs do not provide a good enough way of estimating upper bounds for the Bergman kernel. Instead of trying to fit a polydisc \mathcal{D} about the point z into Ω, it seems better to try to fit the largest "monomial polyhedron" P about z into Ω, where a monomial polyhedron P associated with a finite subcollection \mathcal{B} of index space $\mathcal{N}^{n}, \mathcal{N}=\mathbb{N} \cup\{0\}$, is defined as follows.

Definition 1.1. A domain P in \mathbb{C}^{n} is a monomial polyhedron if there exists a subset $\mathcal{B}=\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ of \mathcal{N}^{n} and, for each $\alpha \in \mathcal{B}$, there exists a unique $C_{\alpha} \in \mathbb{R}$ such that $P=P(\mathcal{B})=\left\{z \in \mathbb{C}^{n}:\left|z^{\alpha}\right|<e^{C_{\alpha}}, \alpha \in \mathcal{B}\right\}$.

