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Introduction

In [25; 26] it was discovered that there exist pairs of wide classes of Köthe spaces
(X ,Y ) such that

L(X, Y ) = LB(X, Y ) if X ∈X , Y ∈Y, (1)

whereLB(X, Y ) is the subspace of all bounded operators fromX to Y. If either
anyX ∈ X is Schwartzian or anyY ∈ Y is Montel, then this relation coincides
with

L(X, Y ) = Lc(X, Y ) if X ∈X , Y ∈Y, (2)

whereLc(X, Y ) denotes the subspace of all compact operators.
This phenomenon was studied later by many authors (see e.g. [1; 5; 11; 12; 13;

14; 15; 20; 21]); of prime importance are Vogt’s results [24] giving a generally
complete description of the relations (1) for the general case of Fréchet spaces (for
further generalizations see also [3; 4]).

Originally, the main goal in [25; 26] was the isomorphism of Cartesian prod-
ucts (and, consequently, the quasi-equivalence property for those spaces). The pa-
pers made use of the fact that, due to Fredholm operators theory, an isomorphism
of spacesX × Y ' X1× Y1 (X,X1∈X , Y, Y1∈Y ) that satisfies (2) also implies
an isomorphism of Cartesian factors “up to some finite-dimensional subspace”.

In the present paper we generalize this approach onto classesX × Y of prod-
ucts that satisfy (1) instead of (2). Although Fredholm operators theory fails, we
have established that—in the case of Köthe spaces—the stability of an automor-
phism under a bounded perturbation still takes place, but in a weakened form: “up
to some basic Banach space”. In particular, we get a positive answer to Question 2
in [7]: Is it possible to modify somehow the method developed in [25; 26] in or-
der to obtain isomorphic classification of the spacesE0(a) × E∞(b) in terms of
sequencesa, b if ai 6→ ∞ andbi 6→ ∞?

Some of our results are announced without proofs in [9].
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