Bounded Operators and Isomorphisms of Cartesian Products of Fréchet Spaces

P. Djakov, T. Terzioğlu, M. Yurdakul, \& V. Zahariuta

Introduction

In $[25 ; 26]$ it was discovered that there exist pairs of wide classes of Köthe spaces $(\mathcal{X}, \mathcal{Y})$ such that

$$
\begin{equation*}
L(X, Y)=L B(X, Y) \quad \text { if } X \in \mathcal{X}, \quad Y \in \mathcal{Y}, \tag{1}
\end{equation*}
$$

where $L B(X, Y)$ is the subspace of all bounded operators from X to Y. If either any $X \in \mathcal{X}$ is Schwartzian or any $Y \in \mathcal{Y}$ is Montel, then this relation coincides with

$$
\begin{equation*}
L(X, Y)=L_{c}(X, Y) \quad \text { if } X \in \mathcal{X}, \quad Y \in \mathcal{Y} \tag{2}
\end{equation*}
$$

where $L_{c}(X, Y)$ denotes the subspace of all compact operators.
This phenomenon was studied later by many authors (see e.g. [1; 5; 11; 12; 13; $14 ; 15 ; 20 ; 21]$); of prime importance are Vogt's results [24] giving a generally complete description of the relations (1) for the general case of Fréchet spaces (for further generalizations see also [3; 4]).

Originally, the main goal in [25; 26] was the isomorphism of Cartesian products (and, consequently, the quasi-equivalence property for those spaces). The papers made use of the fact that, due to Fredholm operators theory, an isomorphism of spaces $X \times Y \simeq X_{1} \times Y_{1}\left(X, X_{1} \in \mathcal{X}, Y, Y_{1} \in \mathcal{Y}\right)$ that satisfies (2) also implies an isomorphism of Cartesian factors "up to some finite-dimensional subspace".

In the present paper we generalize this approach onto classes $\mathcal{X} \times \mathcal{Y}$ of products that satisfy (1) instead of (2). Although Fredholm operators theory fails, we have established that-in the case of Köthe spaces-the stability of an automorphism under a bounded perturbation still takes place, but in a weakened form: "up to some basic Banach space". In particular, we get a positive answer to Question 2 in [7]: Is it possible to modify somehow the method developed in [25; 26] in order to obtain isomorphic classification of the spaces $E_{0}(a) \times E_{\infty}(b)$ in terms of sequences a, b if $a_{i} \nrightarrow \infty$ and $b_{i} \nrightarrow \infty$?

Some of our results are announced without proofs in [9].

[^0]
[^0]: Received October 16, 1997. Revision received May 28, 1998.
 Research of the first author was supported by the TÜBİTAK-NATO Fellowship Program and partially by the NRF of Bulgaria, grant no. MM-808/98.
 Michigan Math. J. 45 (1998).

