A Canonical Differential Complex for Jacobi Manifolds

Domingo Chinea, Juan C. Marrero, & Manuel de León

1. Introduction

Jacobi structures were independently introduced by Lichnerowicz [27; 28] and Kirillov [21], and they are a combined generalization of symplectic or Poisson structures and of contact structures.

A Jacobi structure on an *n*-dimensional manifold *M* is a pair (Λ, E) , where Λ is a skew-symmetric tensor field of type (2, 0) and *E* a vector field on *M* verifying $[\Lambda, \Lambda] = 2E \land \Lambda$ and $[E, \Lambda] = 0$. The manifold *M* endowed with a Jacobi structure is called a Jacobi manifold. A bracket of functions (called Jacobi bracket) is then defined by $\{f, g\} = \Lambda(df, dg) + fE(g) - gE(f)$. Thus, the algebra $C^{\infty}(M, \mathbb{R})$ of C^{∞} functions on *M*, endowed with the Jacobi bracket, is a local Lie algebra in the sense of Kirillov (see [21]). Conversely, a structure of local Lie algebra on $C^{\infty}(M, \mathbb{R})$ defines a Jacobi structure on *M* (see [16; 21]). When *E* identically vanishes, we recover the notion of Poisson manifold. Another link between Jacobi and Poisson manifolds is the following. Take a regular Jacobi manifold, that is, the vector field *E* defines a regular foliation; thus, the quotient manifold inherits a Poisson structure.

The purpose of this paper is to extend to Jacobi manifolds the construction of the canonical double complex for Poisson manifolds due to Koszul [23] and Brylinski [6]. The first step is to define an appropriate differential operator $\delta = [i(\Lambda), d]$ that extends the one introduced by Koszul [23] and Brylinski [6]. The restriction of δ to the complex of basic differential forms $\Omega_B^*(M)$ is a homology operator, and the resultant homology groups will be called canonical. Motivated by Brylinski, we propose the following problem.

PROBLEM A-J. Give conditions on a compact Jacobi manifold which ensure that any basic cohomology class in $H_B^*(M)$ has a harmonic representative α , that is, $d\alpha = 0$ and $\delta \alpha = 0$.

Moreover, the relation $\delta d + d\delta = 0$ allows us to introduce a double complex. Associated with it, there exist two spectral sequences. The second spectral sequence always degenerates at the first term; however, this is not true for the first one. Hence we propose the following problem.

Received September 16, 1997.

Michigan Math. J. 45 (1998).