A Counterexample Related to Hartogs' Phenomenon (A Question by E. Chirka)

JEAN PIERRE ROSAY

We will denote by U (resp. \overline{U}) the open (resp. closed) unit disk in \mathbb{C} . Chirka [1] (see also [2]) recently proved the following remarkable result.

THEOREM (Chirka). Let f be a continuous function on \overline{U} with values in U, and let S be its graph ($S = \{(\zeta, f(\zeta)) \in \mathbb{C}^2, \zeta \in \overline{U}\}$). Then every holomorphic function defined on a connected neighborhood of the set $(\partial U \times U) \cup S$ in $\mathbb{C} \times U$ extends holomorphically to the polydisk U^2 .

It is shown by a simple example in [1] that the condition |f| < 1 on U (not only on ∂U) is essential.

If f is holomorphic, the result is of course classical. Here, answering a question by Chirka, we show that surprisingly (?) the theorem just stated does not extend to higher dimensions.

Our result is as follows.

PROPOSITION. There exist continuous functions φ_1 , φ_2 defined on \overline{U} and satisfying $|\varphi_1|$, $|\varphi_2| < 1$, and there exists a domain ω in \mathbb{C}^3 such that:

- (i) ω contains $\partial U \times U^2$ and ω contains the graph of (φ_1, φ_2) (i.e., $(\zeta, \varphi_1(\zeta), \varphi_2(\zeta)) \in \omega$ for every $\zeta \in \overline{U}$); but
- (ii) there exists a holomorphic function h on ω that does not extend holomorphically to U^3 .

REMARK. It may be worthwhile pointing out that, in the construction detailed next, the following is achieved: One can find an arbitrarily small neighborhood Z of $\partial U \times U^2$ and functions φ_1 and φ_2 , as in the Proposition, such that the union of Z and of the graph of (φ_1, φ_2) has a basis of pseudoconvex neighborhoods.

An explicit example would still be desirable. The first and main step in the construction of the example is as follows. Find a strictly pseudoconvex domain $\Omega \subset \mathbb{C}^3$, as well as the graph Γ of a smooth function on the unit disk, $\Gamma = \{(\zeta, \varphi_1(\zeta), \varphi_2(\zeta)) \in \mathbb{C}^3, \zeta \in \overline{U}\}$, such that the following statements hold.

(a) Ω contains $\partial U \times U^2$.

(b) $|\varphi_1|$ and $|\varphi_2| < 1$, and $|\partial \varphi_1 / \partial \overline{\zeta}| + |\partial \varphi_2 / \partial \overline{\zeta}| \neq 0$.

Received August 25, 1997. Revision received February 23, 1998. Partially supported by a NSF Grant. Michigan Math. J. 45 (1998).