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1. Introduction

In 1867, Riemann [16] discovered a 1-parameter family of minimal surfaces foli-
ated by circles and lines in parallel planes. Since then, many other mathematicians
have characterized these examples from different points of view. Some of these
characterizations can be seen in [1; 2; 4; 6; 14; 19].

Very recently, Meeks, Pérez, and Ros [9] have characterized the plane, the
catenoid, the helicoid, and the Riemann examples as the only properly embedded
genus-0 minimal surfaces with an infinite number of symmetries, and it is conjec-
tured (see [8] and [18]) that this result remains valid without the hypothesis of an
infinite number of symmetries.

In particular, the Riemann examples are the only properly embedded minimal
tori with a finite number of planar ends inR3/T , whereT is the group generated
by a nontrivial translation, which improves the aforementioned results.

Previously, Pérez and Ros [15] had proved that there are no properly embedded
minimal surfaces of genus 1 and a finite number of planar ends inR3/Sθ , where
Sθ is a group generated by a screw motion of angleθ 6= 0.

Observe that the Meeks–Pérez–Ros theorem can be stated by saying that any
properly embedded minimal torus inR3/T with 2n ends is a covering of a torus
in R3/(T/n) with two ends.

In this paper we study the same kind of questions in the more general immersed
case:Is a properly immersed minimal torus with2n ends inR3/T a covering of a
torus inR3/(T/n)with two ends?López, Ritoré, and Wei [6] have found all com-
plete minimal immersed tori inR3/T with two parallel planar embedded ends.
This moduli space consists of a countable number of regular curves and, with the
exception of Riemann examples, each one of these curves contains at least one
point that provides a surface with vertical flux, and hence they are not embedded
(see [7] and [15]).

We give an affirmative answer to the question just posed when dealing with
properly immersed minimal tori with four planar ends. Toward that end, we prove
the following theorem.
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