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1. Introduction

The property of harmonic maps between complete Riemannian manifolds has been
studied extensively by many authors (e.g., [C; Sh; T]). In the present paper we
show some nonexistence results for quasi-conformal harmonic diffeomorphisms
between complete Riemannian manifolds. In dimension 2, harmonic maps are
closely related to the deformation theory of Riemann surfaces. One of the ques-
tions that arises naturally is:Are Riemann surfaces that are related by harmonic
diffeomorphisms necessarily quasi-conformally related?See Schoen’s article [S]
for a general discussion on this subject, where other questions were also dis-
cussed. The result we show in this paper provides some partial answers to the
high-dimensional generalization of this type of question. In particular we prove
the following result, which can be thought of as a Liouville type theorem for
harmonic diffeomorphisms.

Theorem 1.1. LetMn be a complete manifold withRicciM ≥ 0, and letNn be
a simply connected manifold with nonpositive sectional curvature, wheren is the
dimension of both manifolds. If there is a pointp ∈M such thatlim r→∞Vp(r) =
o(r n), then there is no quasi-conformal harmonic diffeomorphism fromM intoN
with polynomial growth energy density.

It is not surprising that the growth rate of energy density plays a role here. For
example, Wan proved [W] that a harmonic diffeomorphism between hyperbolic
spaces of dimension 2 is quasi-conformal if and only if it has bounded energy
density. The “only if ” part of Wan’s theorem was generalized to high dimension
in [LTW]. Where it was proved that if the Ricci curvature of the domain mani-
fold is bounded from below and if the first eigenvalue of the target manifold is
positive, then any quasi-conformal harmonic diffeomorphism into the target man-
ifold has bounded energy density. These results and some other related results in
[HTTW] all indicate that the growth condition on the energy density is a natu-
ral assumption and is closely related to the study of quasi-conformal diffeomor-
phisms. On the other hand, we can show by examples that Theorem 1.1 will not be
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