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1. Introduction

LetG be a bounded planar region containing the origin in the complex planeC.
For 1≤ p <∞, the Bergman spaceLpa(G) consists of all analytic functionsf in
G with

‖f ‖p =
(∫

G

|f(z)|p dA(z)
)1/p

<∞,

wheredA denotes the Lebesgue measure on the complex plane.
Let φ be a smooth function with compact support. The Vitushkin localization

operatorTφ is defined by

Tφf(z) =
∫
f(w)− f(z)
w − z ∂̄φ dA(w),

wheref is a bounded function with compact support. LetLp(G) be the space of
measurable functions that are zero offG, and let

‖f ‖p =
(∫

G

|f(z)|p dA(z)
)1/p

<∞.

The Bergman spaceLpa(G) is a closed subspace of the Banach spaceLp(G). It is
well known that the operatorTφ is a bounded linear operator onLp(G) and leaves
L
p
a(G) invariant.
LetH∞(G) denote the Banach algebra generated by bounded analytic functions

onG. A closed subspaceM of Lpa(G) is anH∞(G) invariant subspaceif it is in-
variant under multiplication by each bounded analytic function onG. The dimen-
sion ofM/zM is no less than 1 since zero is inG. An H∞(G) invariant subspace
M satisfies thecodimension-1 propertyif the dimension ofM/zM is 1. LetZ(M)
be the set of common zeros of functions inM. We say thatM has thedivision
propertyif f(z)/(z−λ) is inM wheneverλ∈G \Z(M) andf ∈M with f(λ) =
0. In [5] it was shown that the codimension-1 property is actually equivalent to
the division property. Forf1, f2, . . . , fn in Lpa(G), let [f1, f2, . . . , fn] denote the
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