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Introduction

For integers: > 1, Hermite’s constant is the smallest numbgisuch that, for all
latticesA C R” of rankn, there is a nonzero lattice poirte A with

IX|l < ¥ 2 det(A)Y/".

Here||x|| denotes the usual Euclidean lengthxoHermite was the first to prove
the existence of such a constant. He showed that

2 A (1)
for n > 2. Using (1) and a quick induction argument giyes< yg—l. After ver-
ifying that y, = 2/+/3, Hermite arrived at the upper boung < (2/+/3)" .
Later, Minkowski used his first convex bodies theorem (see [3]) to show that

v, < 4V(n)~?", )

whereV (n) denotes the volume of the unit ballRt'. Note that this upper bound
for y, grows linearly inn asn — oo, as opposed to the exponential growth of
Hermite’s original upper bound.

Note that, by introducing a scaling factor, we may restrict to lattices of determi-
nant 1 in the definition of Hermite’s constant (see Lemma 4). Minkowski's work
on the space of such lattices led him to state (without proof) that
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This result was first proven by Hlawka (see [3, Sec. 19]); itis a special case of what
is now called the Minkowski—Hlawka theorem. This, along with Minkowski’s up-
per bound stated in (2), shows thgtin fact grows linearly im asn — oo. Itis
not known whethey, /n approaches a limit as — oo. The exact value of, is
known only forn < 8 (see [3]).

Hermite's constant is directly related to the densest lattice packing of spheres
in R", and through this to many areas of mathematics and even other natural sci-
ences (number theory, lie algebras, numerical integration, chemistry, and digital
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