Pluricomplex Green Functions and the Dirichlet Problem for the Complex Monge–Ampère Operator

AHMED ZERIAHI

0. Preliminaries

Let us recall some important notions which will be used here. Let D be an open subset in \mathbb{C}^n , and denote by PSH(D) the cone of plurisubharmonic functions $u: D \to [-\infty, +\infty[$ on D not identically equal to $-\infty$ on any component of D. Let $u \in PSH(D)$. For $a \in D$ and $0 < r < d_a := dist(a; \mathbb{C}^n \setminus D)$, we set

$$M_u(a,r) := \int_{|\xi|=1} u(a+r\xi) \, d\sigma(\xi),$$
 (0.1)

where $d\sigma(\xi)$ is the normalized area measure on the unit Euclidean sphere in \mathbb{C}^n . It is well known that the function $r \mapsto M_u(a, r)$ is increasing and convex in $\log r$. Then the following limit exists:

$$\nu(u; a) := \lim_{r \to 0^+} \frac{M_u(a, r)}{\log r}.$$
 (0.2)

By [Ki1], (0.2) coincides with the following definition [L1]:

$$\nu(u;a) := \lim_{r \to 0^+} \frac{\sigma_u(B(a,r))}{\omega_{2n-2}r^{2n-2}},\tag{0.3}$$

where ω_{2n-2} is the volume of the unit ball in \mathbb{C}^{n-1} and $\sigma_u := \frac{1}{2\pi} \Delta u \beta_n = \frac{1}{2\pi} dd^c u \wedge \beta_{n-1}$; β is the standard Kälherian form of \mathbb{C}^n and $\beta_{n-1} := \beta^{n-1}/(n-1)!$.

The number defined by (0.3) is called the *Lelong number* of the current dd^cu at the point a, or the *density* of u at the point a. It is well known that the Lelong number is independent of holomorphic changes of coordinates [S; D3]. Thus it is possible to define this number for plurisubharmonic functions on complex manifolds. In fact, the definition (0.3) is meaningful in this case.

The function $v(u; \cdot)$: $a \mapsto v(u; a)$ defined by (0.3) is upper semicontinuous on D, with values in \mathbb{R}_+ . If $u(a) > -\infty$ then v(u; a) = 0. If $u = \log|f|$, where f is a holomorphic function such that f(a) = 0 and not identically zero on a neighborhood of a, then $v(\log|f|; a)$ is an integer equal to the multiplicity of the zero of f at the point a.

Received November 5, 1996. Revision received March 26, 1997. Michigan Math. J. 44 (1997).