Isomorphic Classification of the Spaces of Whitney Functions

ALEXANDER P. GONCHAROV & MEFHARET KOCATEPE

I. Introduction

Let $K \subset \mathbb{R}$ be a compact set such that $K = \overline{\operatorname{int} K}$. By $\mathcal{E}(K)$ we denote the space of infinitely differentiable Whitney functions on K. This is the space of functions $f: K \to \mathbb{R}$ extendable to C^{∞} -functions on \mathbb{R} equipped with the topology defined by the sequence of norms

$$||f||_q = |f|_q + \sup\{ |(R_y^q f)^{(i)}(x)| \cdot |x - y|^{i - q} : x, y \in K, x \neq y, i \leq q \}, q = 0, 1, ...,$$

where $|f|_q = \sup\{|f^{(j)}(x)| : x \in K, j \le q\}$ and

$$R_y^q f(x) = f(x) - T_y^q f(x) = f(x) - \sum_{k=0}^q \frac{f^{(k)}(y)}{k!} (x - y)^k$$

is the Taylor remainder. With

$$U_q = \{ f \in \mathcal{E}(K) : ||f||_q \le 1 \},\$$

the sequence (U_q) need not decrease, but the sets εU_q with $\varepsilon > 0$ and $q \in \mathbb{N}$ constitute a basis of neighborhoods of zero in $\mathcal{E}(K)$. It was shown in [20] by Tidten and in [25] by Vogt that the space $\mathcal{E}(K)$ is isomorphic to the space

$$s = \left\{ x = (\xi_n) : ||x||_q = \sum_{n=1}^{\infty} |\xi_n| n^q < \infty \ \forall q \right\}$$

of rapidly decreasing sequences if and only if there is a continuous extension operator $L: \mathcal{E}(K) \to C^{\infty}(\mathbb{R})$.

Let $\mathbb{N} = \{1, 2, ...\}$ and $\mathbb{Z}^+ = \{0, 1, 2, ...\}$. We consider compact sets of the following type. For two sequences (a_n) , (b_n) such that $0 < \cdots < b_{n+1} < a_n < b_n < \cdots < b_1 < 1$, let $I_n = [a_n, b_n]$ and $K = \{0\} \cup \bigcup_{n=1}^{\infty} I_n$. By ψ_n we denote the length of I_n ; $h_n = a_n - b_{n+1}$ is the distance between I_n and I_{n+1} . In what follows we restrict ourselves to the case

$$\psi_n \searrow 0, \ h_n \searrow 0, \ \psi_n \leq h_n, \ n \in \mathbb{N},$$
 (1)

$$\exists Q \in \mathbb{N} : h_n \ge b_{n+1}^Q, \quad n \in \mathbb{N}. \tag{2}$$

Received October 21, 1996. Revision received April 28, 1997. Michigan Math. J. 44 (1997).