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1. Introduction and Statement of Results

Let S” be the unit sphere in C”, and let do denote the surface area form on S”
normalized so f ¢n do = 1; B, will denote the unit ball and dv will be the normal-
ized volume form on B,. We assume familiarity with the invariant Poisson inte-
gral and nonisotropic metric d(¢, 1) = |1 — (¢, n)|'/? used in the study of function
theory on §”; see [R, Chap. 5]. For 0 < p < oo, H?(S") is the usual space of
distributions whose invariant Poisson integrals are holomorphic on B,, and whose
admissible maximal functions belong to L?(do); see [R, Chap. 4]. For a function
u defined on B, and 1 < g < oo, let A,[u] be the area function
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where ¢ € S” and I'(¢) is the usual approach region
L) ={zeBy: 11— (z,8) <1—lz}.

For 0 < p < oo, the tent space T (B,,) consists of all functions u such that
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The tent space 7,°(B,) consists of those functions u such that |u(z)|? dv(z)/
(1 — |z]) 1s a Carleson measure; see [CMS].

It is well known that if 0 < p < oo then a distribution F whose invariant Pois-
son integral is holomorphic belongs to HP(S") if and only if u(z) = (1 — [z]) x
(|F(2)|+|VF(z2)]) belongs to T ; here F(z) is used to denote the invariant Poisson
integral of F evaluated at z € B,,. Another characterization of H? for0 < p < oo
is given in terms of the “g” function. If u is defined on B, and 1 < g < o0, let
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Then a distribution F with holomorphic Poisson integral belongs to H? if and only
if go(u) € LP(do), where again u(z) = (1 — |z|)(|F(2)| + |VF(z)|); see [AB]. In
each of these characterizations we have norm equivalences:
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