The Minimal Norm Property for Quadratic Differentials in the Disk

NIKOLA LAKIC

1. Introduction

Let Δ be the unit disk. We let $M(\Delta)$ be the open unit ball of $L^{\infty}(\Delta)$. For any μ in $M(\Delta)$, there exists a solution $f: \Delta \to \Delta$ of the Beltrami equation

$$f_{\bar{z}} = \mu f_z,\tag{1}$$

unique up to a postcomposition by a Möbius transformation. We call f a quasi-conformal homeomorphism of a disk with the Beltrami coefficient μ , and we denote by f^{μ} the solution f of (1) normalized by f(i) = i, f(1) = 1, and f(-1) = -1. The solution f can be extended to a homeomorphism of the closure of Δ , and the restriction h of that extension to the boundary of Δ is called a quasi-symmetric homeomorphism of a circle. The dilatation K(h) of a quasisymmetric homeomorphism h is the infimum of all maximal dilatations of quasiconformal extensions of h to h. The boundary dilatation h0 of a quasisymmetric homeomorphism h1 is obtained by looking at the infimum of all maximal dilatations of quasiconformal extensions of h2 to a neighborhood h3 of the boundary and taking the limit of these dilatations as h3 symmetric if h4 of h5 to the boundary. We call a quasisymmetric homeomorphism h5 symmetric if h6 of h6 and h7 of h8 symmetric if h6 and h8 symmetric if h8 and h9 are constant.

Let $QC(\Delta)$ be the space of all quasiconformal homeomorphisms of Δ . Two elements f_1 , f_2 in $QC(\Delta)$ are *equivalent* if there exists a conformal homeomorphism α of Δ such that $f_1(t) = \alpha \circ f_2(t)$ for every $t \in \partial \Delta$. The Teichmüller space $T(\Delta)$ is $QC(\Delta)$ factored by this equivalence relation. The equivalence class of the identity mapping is called the *basepoint* of $T(\Delta)$.

We let $A(\Delta)$ be the Banach space of all holomorphic quadratic differentials φ on Δ satisfying $\|\varphi\| = \iint_{\Delta} |\varphi| < \infty$. One useful property of the Banach space $A(\Delta)$ is the following lemma, due to Strebel (see [S2]).

LEMMA 1. Let φ be an arbitrary holomorphic quadratic differential of norm $\|\varphi\| \leq M < \infty$ in the unit disk Δ . Let w be a boundary point of Δ . Then, for any $\varepsilon > 0$ and $\rho_2 > 0$, there exists a number ρ_1 , $0 < \rho_1 < \rho_2$, such that

$$\int_{\sigma_o} |\varphi(z)|^{1/2} |dz| < \varepsilon$$

Received April 30, 1996. Michigan Math. J. 44 (1997).