Capacity Distortion by Inner Functions in the Unit Ball of \mathbb{C}^n

Domingo Pestana & José M. Rodríguez

1. Introduction

An inner function is a bounded holomorphic function from the unit ball \mathbf{B}_n of \mathbf{C}^n into the unit disk Δ of the complex plane such that the radial boundary values have modulus 1 almost everywhere. If E is a nonempty Borel subset of $\partial \Delta$, we denote by $f^{-1}(E)$ the following subset of the unit sphere \mathbf{S}_n of \mathbf{C}^n :

$$f^{-1}(E) = \{ \xi \in \mathbf{S}_n : \lim_{r \to 1} f(r\xi) \text{ exists and belongs to } E \}.$$

There is a classical lemma of Löwner (see e.g. [R, p. 405; T, p. 322]), about the distortion of boundary sets under inner functions.

LÖWNER'S LEMMA. An inner function f, with f(0) = 0, is a measure-preserving transformation when viewed as a mapping from S_n to $\partial \Delta$. That is, if E is a Borel subset of $\partial \Delta$ then $|f^{-1}(E)| = |E|$, where in each case $|\cdot|$ denotes the corresponding normalized Lebesgue measure.

Here we extend this result to fractional dimensions as follows.

THEOREM 1. Let f be inner in the unit ball of \mathbb{C}^n $(n \ge 1)$, set f(0) = 0, and let E be a Borel subset of $\partial \Delta$. Then:

(i) if
$$0 < \alpha < 2$$
 (and also $\alpha = 0$ if $n = 1$), then

$$\operatorname{cap}_{2n-2+\alpha}(f^{-1}(E)) \ge C(n,\alpha)\operatorname{cap}_{\alpha}(E); \tag{1.1}$$

(ii) if $\alpha = 0$ and n > 1, then

$$\frac{1}{\operatorname{cap}_{2n-2}(f^{-1}(E))} \le C(n) \left(1 + \log \frac{1}{\operatorname{cap}_0(E)} \right). \tag{1.2}$$

Here $\operatorname{cap}_{\alpha}$ and cap_{0} denote (respectively) α -dimensional Riesz capacity and logarithmic capacity with respect to the distance in S_{n} given by

$$d(a,b) = |1 - \langle a, b \rangle|^{1/2},$$

where

Received January 19, 1996.

Research of the second author was partially supported by a grant from CYCIT (Ministerio de Educación y Ciencia, Spain).

Michigan Math. J. 44 (1997).