The Unitary Orbit of Strongly Irreducible Operators in the Nest Algebra with Well-Ordered Set

You Qing Ji, Chun Lan Jiang, & Zong Yao Wang

1. Introduction

Let \mathcal{H} be a complex, separable, infinite-dimensional Hilbert space; $\mathcal{L}(\mathcal{H})$, $\mathcal{K}(\mathcal{H})$ denote (respectively) the algebra of all bounded linear operators acting on \mathcal{H} and the ideal of all compact operators.

Let $\sigma_0(T)$ denote the isolated eigenvalues of T of finite multiplicity. If λ belongs to $\sigma_0(T)$, let $E_T\{\lambda\}$ denote the Riesz projection corresponding to the eigenspace for λ . When X is a compact subset of the plane, let X denote the polynomially convex hull of X.

An operator T is *strongly irreducible* if the only idempotent operators in $\{T\}'$ are 0 and I, where $\{T\}'$, denotes the commutant of T. Let Ω be a bounded connected open set in C. Recall that $\mathcal{B}_n(\Omega)$, the set of Cowen-Douglas operators of index n $(1 \le n \le +\infty)$, is the set of those operators B on \mathcal{H} satisfying

- (i) $\sigma(B) \supset \Omega$;
- (ii) $\operatorname{nul}(\lambda B) = \operatorname{ind}(\lambda B) = n$, $(\lambda \in \Omega)$;
- (iii) $\bigvee \{ \ker(\lambda B); \lambda \in \Omega \} = \mathcal{H}.$

Note that (iii) can be replaced by

(iii')
$$\bigvee \{ \ker(\lambda_0 - B)^k : k \ge 1 \} = \mathcal{H} \text{ for some } \lambda_0 \in \Omega.$$

A nest \mathcal{N} in \mathcal{H} is a linearly ordered (by inclusion) family of subspaces containing $\{0\}$ and \mathcal{H} . The *nest algebra* associated with \mathcal{N} is the family of operators defined by

$$\mathcal{T}(\mathcal{N}) = \{ T \in \mathcal{L}(\mathcal{H}) : TN \subset N \text{ for all } N \text{ in } \mathcal{N} \}.$$

In what follows, $N \in \mathcal{N}$ denotes both a subspace and the orthogonal projection onto it; $T \in (SI)$ means that T is a *strongly irreducible* operator on its acting space.

For each $N \in \mathcal{N}$, let

$$N_{-} = \bigvee \{N' \in \mathcal{N}, \ N' \subsetneq N\}.$$

Received December 20, 1995. Revision received June 17, 1996.

The authors are partially supported by the NNSF of China.

Michigan Math. J. 44 (1997).