Controls on the Plus Construction

R. J. DAVERMAN* & F. C. TINSLEY

0. Introduction

Given a closed *n*-manifold M ($n \ge 5$), a finitely presented group G, and an epimorphism $\mu \colon \pi_1(M) \to G$ with perfect kernel, Quillen's plus construction [Q] provides a cobordism (W, M, N) where W is a compact manifold satisfying:

- (1) $\partial W = M \cup N$;
- (2) the inclusion $N \rightarrow W$ is a homotopy equivalence; and
- (3) $\pi_1(N)$ is isomorphic to the quotient $G \cong \pi_1(M)/\ker(\mu)$.

We obtain a more controlled version of this construction, namely, a closed map $p: W \rightarrow [-1, 1]$ satisfying the additional properties:

- (4) $p^{-1}(t)$ is a manifold for each $t \in [-1, 1]$; and
- (5) $M = p^{-1}(1)$ and $N = p^{-1}(-1)$.

We call a map $p: W \to [-1, 1]$ satisfying properties (4)-(5) a crumpled lamination on (W, M, N) and denote it by the 4-tuple (W, M, N, p).

Our earlier constructions required special hypotheses on $\ker(\mu)$ in order to construct crumpled laminations. Here, we show none are needed. In particular, our following main result asserts that any cobordism arising from a Quillen plus construction admits a crumpled lamination.

MAIN THEOREM (THEOREM 1.1). For any closed n-manifold M ($n \ge 6$), finitely presented group G, and epimorphism $\mu \colon \pi_1(M) \to G$ with perfect kernel, there is a cobordism W admitting a crumpled lamination (W, M, N, p), where $p^{-1}([-1,0]) \approx N \times [-1,0]$, $p^{-1}((0,1]) \approx M \times (0,1]$, $\pi_1(N) \cong G$, the inclusion $N \to W$ is a homotopy equivalence, and the inclusion $M \to W$ induces the homomorphism μ on fundamental groups.

Simple homotopy theory and prior results [DT2] then yield the following characterization.

MAIN COROLLARY (COROLLARY 1.3). Let (W, M, N) be a compact cobordism with $n = \dim(M) \ge 6$. Then W admits a crumpled lamination

Received November 17, 1995.

^{*}Research supported in part by NSF Grant DMS-9401086.