Commuting Toeplitz Operators
on the Bergman Space of an Annulus

ZELIKO CuUCKOVIE

Introduction

Let Q be a domain in the complex plane C, and let L2(Q) be the Bergman
space consisting of those analytic functions on 2 that are square integrable
on  with respect to area measure dA. Of particular interest are the cases
Q=D={zeC:|z|<1l}and Q=@ ={zeC: R<|z| <1} for 0< R < 1. The
Bergman space is a closed subspace of the Hilbert space L*(Q) of all square
integrable complex-valued functions on 2, so there is an orthogonal projec-
tion P from L?(Q) onto L3(Q). If ¢ belongs to L*(Q), the Toeplitz opera-
tor with symbol ¢, denoted T, is a linear operator from L2%(Q) to L2(Q) de-
fined by T, f = P(¢f). In [6] Axler and the author characterized commuting
Toeplitz operators on L2(D) whose symbols are harmonic. A complex-valued
function is harmonic on  if its Laplacian vanishes identically on Q. We
proved that two Toeplitz operators with symbols harmonic on D commute
only in the obvious cases. In this paper we want to prove the analogous theo-
rem for Toeplitz operators acting on L2(®), provided their symbols are in
a certain subclass of functions harmonic in Q. It is well known that every
function harmonic on D is of the form f+ g, where f and g are analytic on
D. On the other hand, the logarithmic conjugation theorem {5, p. 179] im-
plies that every # harmonic on @ is of the form u(z) = f(z)+ g(z) + c log|z|,
where f and g are analytic on @, c € C. Our commutativity theorem applies
to harmonic symbols without the logarithmic terms. Namely, we have the
following.

THEOREM 1. Suppose that ¢ = fi+f, and = g+, are bounded har-
monic functions on Q. Then T, T, = T, T, if and only if:

(i) ¢ and ¢ are both analytic on Q; or
(ii) @ and ¥ are both analytic on Q; or
(iii) there exist constants a, b € C, not both 0, such that ap + by is con-
stant on Q.

The main tool in the proof of the disk theorem was the automorphisms of
the disk. However, the automorphisms of the annulus are very sparse and
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