Extremal Problems for Quadratic Differentials

RICHARD FEHLMANN & FREDERICK P. GARDINER

1. Introduction

The Extremal Problem on the Unit Disk

Let \mathbb{D} denote the unit disk and σ a finite set of four or more points on $\partial \mathbb{D}$. Then the Banach space Q_{σ} of all functions φ , holomorphic in $\mathbb{C}\setminus \sigma$, for which $\varphi(z) dz^2$ is real along $\partial \mathbb{D}\setminus \sigma$ and for which the L_1 -norm

$$\|\varphi\| = \int\!\!\int_{\mathbb{D}} |\varphi| \, dx \, dy < \infty,$$

has positive dimension. Let the homotopy types γ_j of cross-cuts in $\bar{\mathbb{D}} \setminus \sigma$ be given. By reflection across the boundary of $\mathbb{D}(z \mapsto (\bar{z})^{-1})$, the cross-cuts γ_j become closed curves g_j on the Riemann sphere. We assume that the family of these closed curves on $\bar{\mathbb{C}} \setminus \sigma$ is *admissible* in the following sense:

- (i) the curves g_i are nonintersecting Jordan curves;
- (ii) no two of the closed curves g_j is homotopic in $\overline{\mathbb{C}} \setminus \sigma$; and
- (iii) none of the curves g_j is homotopically trivial or homotopic to a single point of σ .

The system of cross-cuts γ_j is called admissible if the corresponding reflected system of closed Jordan curves g_j is admissible. The Banach space Q_{σ} is a real subspace of the complex vector space of holomorphic, quadratic differentials with finite norm on the Riemann surface $\overline{\mathbb{C}} \setminus \sigma$. Since there is a global parameter z for the Riemann surface \mathbb{D} , identifying $\varphi(z)$ with $\varphi(z) dz^2$ provides an isomorphism between functions and quadratic differentials. Using this identification, we will refer to elements of Q_{σ} as quadratic differentials.

Any quadratic differential on a Riemann surface S induces a vector of heights of homotopy classes of simple, closed curves on S. The height of a closed curve γ is the infimum of the integrals

$$\int_{\tilde{\gamma}} |\operatorname{Im}(\varphi(z)^{1/2} dz)|,$$

Received March 3, 1995. Final revision received May 23, 1995. Michigan Math. J. 42 (1995).