Functional Calculus for Noncommuting Operators

GELU POPESCU

1. Notation and Preliminaries

Throughout this paper, Λ stands for the set $\{1, 2, ..., n\}$ where n is a fixed natural number. For every $k \in \mathbb{N}^* = \{1, 2, ...\}$ let $F(k, \Lambda)$ be the set of all functions from the set $\{1, 2, ..., k\}$ to Λ , and let

$$\mathfrak{F} = \bigcup_{k=0}^{\infty} F(k, \Lambda), \tag{1.1}$$

where $F(0, \Lambda)$ stands for the set $\{0\}$.

A sequence $S = \{S_{\lambda}\}_{{\lambda} \in \Lambda}$ of unilateral shifts on a Hilbert space ${\mathfrak I}{\mathfrak C}$ with orthogonal final spaces is called a Λ -orthogonal shift if the operator matrix $[S_1, S_2, ..., S_n]$ is nonunitary, that is, ${\mathfrak L} := {\mathfrak I}{\mathfrak C} \ominus (\bigoplus_{{\lambda} \in \Lambda} S_{\lambda} {\mathfrak I}{\mathfrak C}) \neq \{0\}$. This definition is essentially the same as that from [4]. The dimension of ${\mathfrak L}$ is called the multiplicity of the Λ -orthogonal shift. Two Λ -orthogonal shifts are unitarily equivalent if and only if they have the same multiplicity (see [6, Thm. 1.2]).

Let us consider a model Λ -orthogonal shift of multiplicity 1, acting on the full Fock space [3]

$$F^{2}(H_{n}) = \mathbb{C}1 \oplus \bigoplus_{m \ge 1} H_{n}^{\otimes m}, \tag{1.2}$$

where H_n is an *n*-dimensional complex Hilbert space with orthonormal basis $\{e_1, e_2, ..., e_n\}$.

For each $\lambda \in \Lambda$ we define the isometry S_{λ} by

$$S_{\lambda}h = e_{\lambda} \otimes h \quad \text{for } h \in F(H_n).$$
 (1.3)

It is easy to see that $S = \{S_{\lambda}\}_{{\lambda} \in \Lambda}$ is a Λ -orthogonal shift of multiplicity 1. This model will play an important role in our investigation. We shall denote by ${\mathcal P}$ the set of all $p \in F^2(H_n)$ of the form

$$p = a_0 + \sum_{\substack{1 \leq i_1, \dots, i_k \leq n \\ 1 \leq k \leq m}} a_{i_1 \dots i_k} e_{i_1} \otimes \dots \otimes e_{i_k}, \quad m \in \mathbb{N},$$

where $a_0, a_{i_1...i_k} \in \mathbb{C}$. The set \mathcal{O} may be viewed as the algebra of the polynomials in n noncommuting indeterminates, with $p \otimes q$, $p, q \in \mathcal{O}$, as multi-

Received June 16, 1994. Revision received March 3, 1995. Michigan Math. J. 42 (1995).