n-Harmonic Morphisms in Space Are Möbius Transformations

Juan J. Manfredi* & Vincenzo Vespri

1. Introduction

Let Ω and Ω' be open subsets of \mathbb{R}^n . A mapping $f: \Omega \to \Omega'$ is a harmonic *motion* if whenever $u: \Omega' \to \mathbb{R}^n$ is a harmonic function so too is $v = u \circ f$. We say that f is a harmonic *morphism* if f is continuous and $u \circ f$ is harmonic in $f^{-1}(\mathbf{D})$ whenever $u: \mathbf{D} \to \mathbf{R}$ is harmonic, where \mathbf{D} is an arbitrary open subset of Ω' . Clearly every harmonic morphism is a harmonic motion.

It is easy to see that in the one dimension n=1, harmonic motions are simply affine functions. When $n \ge 2$, by considering the harmonic functions x_i , $i=1,\ldots,n$, and x_ix_j , $x_i^2-x_j^2$ for $i\ne j$, we obtain that each component f_i of f is harmonic, $\langle \nabla f_i, \nabla f_j \rangle = 0$, and $|\nabla f_i| = |\nabla f_j|$ for $i\ne j$. Therefore the differential of f, Df(x), must be a conformal matrix for all $x \in \Omega$. In two dimensions n=2 we conclude that f is analytic or anti-analytic on each component of Ω .

In higher dimensions $n \ge 3$, a classical theorem of Liouville implies that f must be a Möbius map on each component of Ω . Therefore, f can be expressed as a finite composition of similarities (rotations, translations, and reflections on planes) and inversions on spheres. Since these last inversions are not harmonic we conclude that, on each component of Ω ,

$$f(x) = \lambda \Theta x + b \tag{1}$$

for certain $\lambda \in \mathbb{R}$, $b \in \mathbb{R}^n$, and Θ an orthogonal matrix. In particular, note that in this Euclidean case harmonic motions are also harmonic morphisms.

More details can be found in [GH], where homeomorphic motions are treated and nonpositive metrics are included, and in [Fu] and [Is], where harmonic morphisms between Riemannian manifolds are studied. Motions of linear partial differential equations with constant coefficients are studied in [Ru]. Finally, a treatment of harmonic morphism from the point of view of abstract potential theory is in [CC].

In this paper we study p-harmonic morphisms. These are defined as above by requiring that they preserve p-harmonic functions, which are solutions of the p-Laplace equation

Received August 26, 1992. Revision received January 13, 1993.

^{*}Research partially supported by NSF grant DMS-9101864.