Removable Singularities for L^p CR Functions

JOHN T. ANDERSON & JOSEPH A. CIMA

1. Introduction

Let Ω be a bounded domain in \mathbb{C}^n with \mathbb{C}^2 -smooth boundary $b\Omega$. A closed subset X of $b\Omega$ is said to be removable for continuous CR functions if, for each function f continuous on $b\Omega \setminus X$ satisfying the tangential Cauchy-Riemann equations in the weak sense on $b\Omega \setminus X$, there exists a function F holomorphic in Ω continuously assuming the boundary values f on $b\Omega \setminus X$. There have been many interesting results proved recently relating removability to convexity with respect to various function spaces. For example, define the $O(\bar{\Omega})$ -hull of $X \subset b\Omega$ to be the set \hat{X}_{Ω} of all points $p \in \bar{\Omega}$ such that $|\phi(p)| \le$ $\max\{|\phi(z)|:z\in X\}$ for all functions ϕ holomorphic in a neighborhood of $\bar{\Omega}$. The following result of Stout [10] will be important for us: Let Ω be a strictly pseudoconvex domain in \mathbb{C}^n , X a compact subset of $b\Omega$. If f is a continuous CR function on $b\Omega \setminus X$, then there exists a function holomorphic in $\Omega \setminus \hat{X}_{\Omega}$, continuous on $\bar{\Omega} \setminus \hat{X}_{\Omega}$, with F = f on $b\Omega \setminus X$. In particular, Stout's theorem implies that if $X = \hat{X}_{\Omega}$ (we say X is $O(\bar{\Omega})$ -convex) then X is removable. In \mathbb{C}^2 , the converse is also true: If X is contained in the boundary of a strictly pseudoconvex domain and X is removable for continuous CR functions, then X is $O(\bar{\Omega})$ -convex. Stout's paper [11] gives an excellent survey of results on removable singularities for CR functions.

We wish to study removable singularities for other classes of CR functions. Fix p, $1 \le p \le \infty$, and let σ be the induced (2n-1)-dimensional Euclidean measure on $b\Omega$. Let us say that $X \subset b\Omega$ is removable for L^p CR functions if, for each $f \in L^p(b\Omega, d\sigma)$ satisfying the tangential Cauchy-Riemann equations on $b\Omega \setminus X$, there exists F in the Hardy space $H^p(\Omega)$ with boundary values f σ -almost everywhere on $b\Omega \setminus X$. In view of Stout's theorem above, it is reasonable to direct our attention first to $O(\bar{\Omega})$ -convex subsets of $b\Omega$. Even in the simplest case, where $\Omega = B$ is the unit ball in \mathbb{C}^n and $O(\bar{\Omega})$ -convexity is equivalent to polynomial convexity, such sets can be quite large—there exist polynomially convex subsets of bB with positive σ -measure (see [11]). We shall restrict our attention to sets of (2n-1)-dimensional measure zero. On the other hand, if the Hausdorff dimension of X is sufficiently small, then the arguments of [11] for the case of L^∞ functions can be adapted

Received July 20, 1992. Revision received January 26, 1993. Michigan Math. J. 41 (1994).