Removable Singularities for Analytic Functions

PEKKA KOSKELA

1. Introduction

The question of removable singularities for analytic functions which are of bounded mean oscillation (in BMO) or uniformly Hölder continuous with exponent α , $0 < \alpha < 1$, (in $\operatorname{Lip}_{\alpha}$) is well understood (see e.g., [Gn, 4.5; Kr; Ka]). In these cases a more or less complete answer can be given in terms of the Hausdorff dimension: a compact subset E of a domain G in the complex plane C is removable for analytic functions defined in $G \setminus E$ and belonging to $\operatorname{BMO}(G)$ ($\operatorname{Lip}_{\alpha}(G)$) if and only if $\operatorname{H}^1(E) = 0$ ($\operatorname{H}^{1+\alpha}(E) = 0$). Here H^{β} denotes β -dimensional Hausdorff measure.

In this note we consider the analogous question for analytic functions defined in $G \setminus E$ and belonging to $BMO(G \setminus E)$ or $locLip_{\alpha}(G \setminus E)$ —that is, instead of assuming a regularity condition in all of G, we require only that our analytic functions satisfy a regularity condition on $G \setminus E$. Recall that if U is an open set in C, then a complex-valued function f belongs to BMO(U) if there is a constant M such that

$$|B|^{-1} \int_{B} |f(z) - f_{B}| dx dy \le M$$

for each open disc $B \subset U$, where $f_B = |B|^{-1} \int_B f(z) \, dx \, dy$ and |B| is the area of B. Next, suppose that $0 < \alpha \le 1$. Following [GM], we say that f belongs to $locLip_{\alpha}(U)$ if there is a constant M such that

$$|f(z)-f(w)| \le M|z-w|^{\alpha}$$

whenever z, w belong to a disc B contained in U. Finally, we recall the definition of the Minkowski dimension of a compact set $K \subset \mathbb{C}$. For $\lambda > 0$ and r > 0 write

$$M_r^{\lambda}(K) = \inf \left\{ kr^{\lambda} : K \subset \bigcup_{i=1}^k B(z_i; r) \right\}$$

and let

$$M^{\lambda}(K) = \limsup_{r \to 0} M_r^{\lambda}(K).$$

Received December 18, 1991. Revision received February 1, 1993. Michigan Math. J. 40 (1993).