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1. Introduction

The question of removable singularities for analytic functions which are of
bounded mean oscillation (in BMO) or uniformly Hélder continuous with
exponent a, 0 <a <1, (in Lip,) is well understood (see e.g., [Gn, 4.5; Kr;
Kal). In these cases a more or less complete answer can be given in terms of
the Hausdorff dimension: a compact subset E of a domain G in the complex
plane C is removable for analytic functions defined in G\ E and belonging
to BMO(G) (Lip,(G)) if and only if H'(E) =0 (H'*%(E) =0). Here H" de-
notes B-dimensional Hausdorff measure.

In this note we consider the analogous question for analytic functions
defined in G\ E and belonging to BMO(G\E) or locLip,(G\ E)—that is,
instead of assuming a regularity condition in all of G, we require only that our
analytic functions satisfy a regularity condition on G\ E. Recall that if U is
an open set in C, then a complex-valued function f belongs to BMO(U) if
there is a constant M such that

|B|~! SBlf(z) —fgldxdy<M

for each open disc B C U, where fz=|B| {3 f(z) dxdy and | B| is the area
of B. Next, suppose that 0 <« < 1. Following [GM], we say that f belongs
to locLip,(U) if there is a constant M such that

| f(2)—f(W)| < M|z—w|*

whenever z, w belong to a disc B contained in U. Finally, we recall the defi-
nition of the Minkowski dimension of a compact set KC C. For A> 0 and
r >0 write

k
MMK)= inf{kr": Kc U B(z;; r)]
i=1

and let
M*K) =lim sup MM K).

r—0
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