Global Integrability of the Jacobian and Quasiconformal Maps

SUSAN G. STAPLES

1. Introduction

Here we present alternate proofs to certain results arrived at in Astala and Koskela's recent article, "Quasiconformal mappings and global integrability of the derivative" [AK]. In addition, we examine how these new ideas shed light on some of the questions raised therein on the geometry of Gehring domains.

Denote the Jacobian matrix of f at x by F(x) and its determinant by J(x, f). Define

$$|f'(x)| = \sup_{h \in \mathbb{R}^n, |h|=1} |F(x)h|.$$
 (1.1)

Let D and D' be domains in \mathbb{R}^n , $n \ge 2$. A homeomorphism $f: D \to D'$ is said to be K-quasiconformal if $f \in W^1_{n, loc}(D)$ and

$$|f'(x)|^n \le KJ(x, f) \text{ a.e. in } D. \tag{1.2}$$

Local integrability results of the following type are well known for quasiconformal maps [Ge]. If $f: D \to D'$ is K-quasiconformal and E is any compact set in D, then there exists an exponent p = p(n, K) > 1 such that

$$\int_{E} (J(x,f))^{p} dm \le M < \infty. \tag{1.3}$$

Here M depends on E and f.

In order to understand corresponding global integrability results, we need the following definitions.

DEFINITION 1.4. The quasihyperbolic distance between x and y in D is given by

$$k_D(x, y) = \inf_{\gamma} \int_{\gamma} \frac{1}{d(z, \partial D)} ds,$$

where γ is any rectifiable curve in D joining x to y. Here ∂D denotes the boundary of D and $d(z, \partial D)$ stands for the distance from z to the boundary of D.

Received December 2, 1991. Revision received March 27, 1992.

The author was supported by Grant #DMS-9004251 from the U.S. National Science Foundation.

Michigan Math. J. 40 (1993).