Global Integrability of the Jacobian
and Quasiconformal Maps
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1. Introduction

Here we present alternate proofs to certain results arrived at in Astala and
Koskela’s recent article, “Quasiconformal mappings and global integrability
of the derivative” [AK]. In addition, we examine how these new ideas shed
light on some of the questions raised therein on the geometry of Gehring
domains.

Denote the Jacobian matrix of f at x by F(x) and its determinant by
J(x, f). Define

|f'(x)|= sup |F(x)A|. 1.1
heR", |h|=1

Let D and D’ be domains in R”, n=2. A homeomorphism f: D — D’ is said
to be K-quasiconformal if feW,} ,(D) and

| f/(x)|"<KJ(x,f) a.e.inD. (1.2)

Local integrability results of the following type are well known for quasi-
conformal maps [Ge]. If f: D — D’ is K-quasiconformal and E is any com-
pact set in D, then there exists an exponent p = p(n, K) > 1 such that

S (J(x, F)P dm <M< oo (1.3)
E

Here M depends on E and f.
In order to understand corresponding global integrability results, we need
the following definitions.

DEeriNITION 1.4. The quasihyperbolic distance between x and y in D is
given by
1
ko (x, =infS _ g,
0N =10t 9, D)

where v is any rectifiable curve in D joining x to y. Here dD denotes the
boundary of D and d(z, dD) stands for the distance from z to the boundary
of D.
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