The Inner Carathéodory Distance for the Annulus II

MAREK JARNICKI & PETER PFLUG

Let

$$A = \{\lambda \in \mathbb{C} : 1/R < |\lambda| < R\} \quad (R > 1),$$

and let c_A , c_A^i denote the Carathéodory distance and the inner Carathéodory distance for the annulus A, respectively (cf. [3]). It is known that $c_A \neq c_A^i$ (cf. [2; 4])—more precisely, for any λ' , $\lambda'' \in A$, the following equivalence is true:

$$c_A(\lambda', \lambda'') = c_A^i(\lambda', \lambda'')$$
 if and only if λ' and λ'' lie on the same radius,
i.e., $\arg \lambda' = \arg \lambda''$ (cf. [4]). (1)

Recall (cf. [1]) that

$$c_A^i(\lambda', \lambda'') = \inf\{L_{\gamma_A}(\alpha) : \alpha : [0, 1] \to A$$

is a piecewise C^1 -curve with $\alpha(0) = \lambda', \alpha(1) = \lambda''\},$ (2)

where $L_{\gamma_A}(\alpha)$ denotes the γ_A -length of α given by the formula

$$L_{\gamma_A}(\alpha) = \int_0^1 \gamma_A(\alpha(\vartheta); \alpha'(\vartheta)) \, d\vartheta. \tag{3}$$

In (3), $\gamma_A: A \times \mathbb{C} \to \mathbb{R}_+$ denotes the Carathéodory-Reiffen metric for A. It is known (cf. [6]) that

$$\gamma_A(\lambda; X) = \frac{1}{R|\lambda|^2} \cdot f\left(\frac{1}{|\lambda|}, -|\lambda|\right) \cdot \Pi(|\lambda|, |\lambda|) \cdot |X| \tag{4}$$

for λ in A and X in C, where

$$f(s,\lambda) = \left(1 - \frac{\lambda}{s}\right) \cdot \Pi(s,\lambda) \tag{5}$$

and

$$\Pi(s,\lambda) = \frac{\prod_{n=1}^{\infty} (1 - (\lambda/s)R^{-4n})(1 - (s/\lambda)R^{-4n})}{\prod_{n=1}^{\infty} (1 - \lambda sR^{-4n+2})(1 - (1/\lambda s)R^{-4n+2})}$$
(6)

for 1/R < s < R and $\lambda \in A$.

The aim of this note is to provide effective formulas for c_A^i —more precisely, for any $\lambda', \lambda'' \in A$, we will find an effective description of the shortest

Received October 8, 1991. Revision received November 8, 1992. Michigan Math. J. 40 (1993).