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1. Introduction and Notation

In this paper, we introduce a class of summation conditions on weights
which are equivalent to the dyadic weight conditions A%, A4, and BY, and
provide a useful alternative way of thinking of these weight conditions. We
then use this equivalence result to find a new proof of the boundedness of
the dyadic square function on L?(w) for any Ag weight w. (Usually one
shows, as in [4], that singular integrals, square functions, and related oper-
ators are bounded on weighted LP(w) spaces by using a good-\ inequality,
but we avoid such methods entirely.)

Our first task (Section 2) is to state and prove the main equivalence theo-
rem. The summation conditions we introduce here are related to the condi-
tions introduced by R. Fefferman, Kenig, and Pipher in [6], but the methods
employed are completely different. In Section 3, we utilize the results and
ideas of Section 2 to prove the boundedness of the dyadic square function
on weighted L?(w) spaces.

Harmonic analysis on “product spaces” has been the subject of much scru-
tiny in recent years (an overview of this field can be found in [3]), and so we
finish, in Section 4, by defining analogs of our summation conditions on
product spaces and by showing that they are related to the product Ag and
B conditions.

Throughout this paper, we will use “C” to indicate a constant that de-
pends only on p and the dimension 7. © =D(R") indicates the set of all
dyadic cubes in R”. For any Q € ®, D(Q) is the collection of proper dyadic
subcubes of Q, and Q is the dyadic double of Q (the smallest dyadic cube
properly containing Q). For any weight w and set S, w(S) denotes the inte-
gral of w over S, | S| denotes the Lebesgue measure of S, and wg = w(S)/|S|.
Unless otherwise specified, 1 < p < oo, but p is otherwise arbitrary.

2. A¢, B;, and Summation Conditions

In this section, we shall examine conditions on a weight w involving the sum
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