On the Lebesgue Test for the Convergence of Vilenkin-Fourier Series

DAVID H. DEZERN & DANIEL WATERMAN

1. Introduction

In the 1970's Onneweer and Waterman obtained analogues, in the context of bounded Vilenkin groups, for the Salem test [1] and the Lebesgue test [2] for the convergence of Fourier series. Recently, by localizing the Salem test, Waterman found a new criterion for the pointwise convergence of Fourier series [3]. Here we adapt Waterman's localization of the Salem test to obtain an extension of the Onneweer-Waterman Lebesgue test for convergence of Fourier series of functions defined on a bounded Vilenkin group.

2. Notation and Terminology

By a Vilenkin group G we mean a compact, 0-dimensional, metrizable abelian group. G contains a fundamental system $\{G_k\}$ of neighborhoods of 0 such that

- (i) $G = G_0 \supset G_1 \supset \cdots \supset G_k \supset G_{k+1} \supset \cdots \supset \{0\};$
- (ii) the quotient G_{k-1}/G_k is of prime order p_k ;
- (iii) $\{0\} = \bigcap_{k=0}^{\infty} G_k$.

If the sequence of primes $\{p_k\}$ is a bounded sequence, we say that G is a bounded Vilenkin group; otherwise we say that G is unbounded. If $p_k = 2$ for every k, then we will call G the Walsh group and denote G by 2^{ω} .

Set $m_0 = 1$ and $m_i = \prod_{\nu=1}^i p_{\nu}$. Each $n \in \mathbb{Z}^+$ has a unique representation $n = \sum_{i=0}^s a_i m_i$ with $0 \le a_i < p_{i+1}$ for $0 \le i \le s$. Denoting the dual of G by X, we may enumerate the elements χ_n of X in such a way that

$$\chi_n = \chi_{m_0}^{a_0} \cdot \chi_{m_1}^{a_1} \cdot \cdots \cdot \chi_{m_s}^{a_s}.$$

For each $k \in \mathbb{Z}^+$ there is an $x_k \in G_k \setminus G_{k+1}$ such that $\chi_{m_k}(x_k) = e^{2\pi i/p_{k+1}} = \zeta_k$. Each $x \in G$ has a unique representation $x = \sum_{i=0}^{\infty} b_i x_i$ with $0 \le b_i < p_{i+1}$. We can enumerate the cosets of G_k in G by means of the lexicographic ordering of the coset representatives of the form $z = \sum_{i=0}^{k-1} b_i x_i$ ($0 \le b_i < p_{i+1}$). In particular, we shall let $z_{\alpha}^{(k)}$ be that coset representative z for which $\alpha = \sum_{i=0}^{k-1} b_i (m_k/m_{i+1})$.

Received October 31, 1990. Michigan Math. J. 39 (1992).