## Plurisubharmonic Extremal Functions and Complex Foliations for the Complement of Convex Sets in $\mathbb{R}^n$

## MIROSŁAW BARAN

In this paper we prove some properties of Siciak's extremal function  $\Phi_E$  in the case of compact subsets of  $\mathbb{R}^n$ . In particular, we establish an interesting inequality for extremal functions of convex sets and present some corollaries that follow from this result. Moreover, we obtain effective formulas for the extremal function in a few interesting cases of convex symmetric sets and in the case of special nonsymmetric convex polyhedra. Finally, we present an effective continuous complex foliation of the domain  $\mathbb{C}^n \setminus E$  (in the cases when we have explicit representation of the extremal function) by the leaves on which the plurisubharmonic extremal function  $u_E$  is harmonic.

## 1. Introduction and Statement of the Main Results

Let E be a compact set in  $\mathbb{C}^n$ . By  $\Phi_E(z)$  ( $\Phi(z, E)$ ) we denote Siciak's extremal function defined as follows:

(1.1) 
$$\Phi_E(z) = \sup\{|p(z)|^{1/\deg p} : p \in \mathbb{C}[w], \deg p \ge 1, \|p\|_E \le 1\}$$

for  $z \in \mathbb{C}^n$ , where  $||p||_E$  denotes the Čebyshev uniform norm  $||p||_E = \sup |p|(E)$ . For definition and applications of the extremal function we refer to Siciak's papers ([12], [13], [14]) and especially to Pawłucki and Pleśniak's papers ([9], [10]). The basic property of the extremal function just defined is contained in the following Zakharyuta-Siciak theorem (see [15] and [13]).

1.2. THEOREM. If E is a compact subset of  $\mathbb{C}^n$  then

$$\Phi_E(z) = \exp u_E(z)$$
 for  $z \in \mathbb{C}^n$ ,

where  $u_E(z) = \sup\{u(z): u \in \mathcal{L}_n, u|_E \le 0\}$  and  $\mathcal{L}_n$  is the Lelong class of plurisubharmonic functions in  $\mathbb{C}^n$  (briefly, PSH( $\mathbb{C}^n$ )) with logarithmic growth:  $u(z) \le \operatorname{const} + \log(1+|z|), z \in \mathbb{C}^n$ .

In this paper we consider the case when E is a compact set in  $\mathbb{R}^n$ . (Here we treat  $\mathbb{R}^n$  as the subset of  $\mathbb{C}^n$  such that  $\mathbb{C}^n = \mathbb{R}^n + i\mathbb{R}^n$ ). Let us denote by g the Joukowski transformation:  $g(z) = \frac{1}{2}(z + \frac{1}{z})$  for  $z \in \mathbb{C} \setminus \{0\}$ . Let  $h: \mathbb{C} \setminus [-1, 1] \to \mathbb{C}$