Dual Operator Algebras and a Hereditary Property of Minimal Isometric Dilations

GEORGE R. EXNER & IL BONG JUNG

1. Introduction

Let 3C be a separable, infinite dimensional, complex Hilbert space, and let $\mathfrak{L}(\mathfrak{K})$ be the algebra of all bounded linear operators on \mathfrak{K} . A dual algebra is a subalgebra of $\mathfrak{L}(\mathfrak{K})$ that contains the identity operator $I_{\mathfrak{K}}$ and is closed in the ultraweak operator topology on $\mathcal{L}(\mathcal{K})$. Note that the weak* topology on $\mathfrak{L}(\mathfrak{K})$ coincides with the ultraweak operator topology on $\mathfrak{L}(\mathfrak{K})$. The theory of dual algebras is closely related to the study of the classes $A_{m,n}$ (to be defined below), where m and n are any cardinal numbers such that $1 \le$ $m, n \leq \aleph_0$. The structures of the classes $\mathbf{A}_{m,n}$ have been applied to the topics of invariant subspaces, dilation theory, and reflexivity (cf. [6]). In particular, the study of these classes has been focused in the last five years on sufficient conditions that a contraction $T \in \mathcal{L}(\mathcal{K})$ belongs to some $\mathbf{A}_{m,n}$. An abstract geometric criterion for membership in A_{\aleph_0, \aleph_0} was first given in [1]. In a sequel to this study, Brown-Chevreau-Exner-Pearcy (cf. [8], [11], [12], [13]) obtained some relationships between dual algebras and Fredholm theory, and established topological criteria for membership in A_{\aleph_0, \aleph_0} or A_{1, \aleph_0} . Recently many authors have studied sufficient conditions for membership in the class A_{1,\aleph_0} , A_{\aleph_0,\aleph_0} , or A (cf. [10], [14], [15], [18]). In particular, in [11] Chevreau-Exner-Pearcy obtained some surprising and unexpected characterizations of the class $A_{1,80}$. As a sequel to these studies, in this note we define a certain hereditary property concerning the minimal isometric dilation of a contraction operator T in A, namely property $(\hat{\mathbf{H}})$, and show that $T \in \mathbf{A}(\mathfrak{IC})$ has property $(\tilde{\mathbf{H}})$ if and only if $T \in \mathbf{A}_{1,\aleph_0}$.

2. Notation and Preliminaries

The notation and terminology employed herein agree with that in [2], [6], and [19]. The class $\mathcal{C}_1(\mathcal{K})$ is the Banach space of trace-class operators on \mathcal{K} equipped with the trace norm. The dual algebra \mathcal{C} can be identified with the

Received September 7, 1990. Revision received September 9, 1991.

The second author was partially supported by a grant from TGRC-KOSEF and Korea Research Foundation, Ministry of Education, 1990–1991.