On the Valence Structure of Analytic Functions

BORIS SOLOMYAK

1

Let f be an analytic function in the open unit disk **D**. The valence function is defined by

$$\nu_f(w) = \operatorname{card}[f^{-1}(w) \cap \mathbf{D}], \quad w \in \mathbf{C},$$

where pre-images are counted with multiplicities. In this article we give a negative answer to the following question posed by Stephenson [5, Question 2]. We say that a function is *analytic on the closed unit disc clD* if it is analytic in some neighbourhood of clD.

QUESTION. If f and g are analytic on $cl\mathbf{D}$ with identical valence functions, does there exist an algebraic homeomorphism ψ of $\partial \mathbf{D}$ with $f \circ \psi \equiv g$?

THEOREM 1. There exist f and g analytic on $cl\mathbf{D}$ such that $v_f(w) \equiv v_g(w)$, $w \in \mathbf{C}$, but $f \circ \psi \neq g$ for any homeomorphism ψ of the unit circle $\partial \mathbf{D}$.

The proof is based on the following theorem.

THEOREM 2. There exists a function ϕ analytic on $cl\mathbf{D}$ and two disjoint arcs $I_1, I_2 \subset \partial \mathbf{D}$ such that ϕ maps each of them homeomorphically onto the same arc but with opposite orientations.

Note that if ϕ is not required to be analytic across $\partial \mathbf{D}$ then such a function can be constructed easily. (Take, for example, $\phi(z) = \omega^2(z)$, where $\omega(z)$ is a conformal map of \mathbf{D} onto $\{z \in \mathbf{D} : \operatorname{Re} z > 0\}$.) To some extent this is also true for Theorem 1: Stephenson [5] produced two analytic functions in \mathbf{D} , piecewise analytic and continuous on $\partial \mathbf{D}$, with all other properties of f and g in Theorem 1.

2

Before we proceed to the proof, let us indicate some relations between Theorem 2 and the multiplicity of analytic Toeplitz operators. Recall that for $\phi \in H^{\infty}$ the Toeplitz operator T_{ϕ} is the multiplication operator on the Hardy

Received May 24, 1990. Revision received January 3, 1991. Michigan Math. J. 39 (1992).