On the Structure of Some Lie Algebras of Kuznetsov

GORDON BROWN

1. Introduction

In [3] Frank showed the existence of two simple graded Lie algebras $L = \sum_{i=-1}^{r} \oplus L_i$ of characteristic 3 for which L_0 is solvable. In [4] Kuznetsov has given a classification of simple graded Lie algebras $L = \sum_{i=-1}^{r} \oplus L_i$ with L_0 having a noncentral radical. In this investigation he encountered algebras of characteristic 3 of what he called series T and \Re , which are described in terms of Cartan prolongations of certain solvable Lie algebras.

It is our purpose here to give (in Section 2) a simple description of Kuznet-sov's algebras that will reveal many of their structural features, and then in Section 3 to prove the isomorphism of the algebras of series T with those described in [2] and to point out structural differences between those of series \mathbb{R} and contact algebras of the same dimension.

The author would like to thank the referee for several helpful suggestions.

2. Description of the Algebras

We shall regard the notation and terminology of [1] as standard and use it without necessarily redefining it here.

Let F be a field of characteristic 3. Let $R = W(2) \oplus \mathfrak{R}(2)$, where $\mathfrak{R}(2)$ is the completed free divided power algebra in x_1, x_2 over F, and W(2) is the Lie algebra of special derivations of $\mathfrak{R}(2)$. R is an algebra under a product $[\ ,\]$ such that for $D \in W(2)$ and $f,g \in \mathfrak{R}(2)$, $[D,f] = -[f,D] = \operatorname{div}(fD)$ (where, as usual, $\operatorname{div}(u_1D_1 + u_2D_2) = D_1u_1 + D_2u_2$); $[f,g] = f\mathfrak{D}_g - g\mathfrak{D}_f$ where $\mathfrak{D}_f = (D_2f)D_1 - (D_1f)D_2$; and on W(2) $[\ ,\]$ is the usual Lie product.

Let $\mathfrak{A}^{\#}$ be the subset of $\mathfrak{A}(2)$ consisting of all formal sums

$$\sum_{0 \le i \le 1} \sum_{0 \le j} a_{ij} x_1^{(i)} x_2^{(j)} \quad \text{with } a_{ij} \in F,$$

and let $W^{\#}$ be the subalgebra of W(2) consisting of all formal sums

$$\sum_{0 \le i \le 2} \sum_{0 \le j} b_{ij} x_1^{(i)} x_2^{(j)} D_1 + \sum_{0 \le k} c_k x_2^{(k)} D_2 \quad \text{with } b_{ij}, c_k \in F.$$

 $T^{\#} = W^{\#} \oplus \mathfrak{A}^{\#}$ is a subalgebra of R under the product [,] defined above.

Received May 21, 1990. Revision received July 29, 1991. Michigan Math. J. 39 (1992).