Hankel and Toeplitz Operators on the Fock Space

KAREL STROETHOFF

1. Introduction

Throughout this paper let $n \in \mathbb{N}$ be fixed. Let μ be the Gaussian measure on \mathbb{C}^n defined by $d\mu(z) = e^{-|z|^2/2} dV(z)/(2\pi)^n$, where V is the usual Lebesgue measure on \mathbb{C}^n . The Fock space \mathfrak{F} , also called the Segal-Bargmann space, is the set of holomorphic functions which are in $L^2(\mathbb{C}^n, \mu)$. The Fock space \mathfrak{F} is a closed subspace of the Hilbert space $L^2(\mathbb{C}^n, \mu)$, with inner product given by $\langle f, g \rangle = \int_{\mathbb{C}^n} f(z) \, \overline{g(z)} \, d\mu(z)$ for $f, g \in L^2(\mathbb{C}^n, \mu)$. Let P denote the orthogonal projection of $L^2(\mathbb{C}^n, \mu)$ onto \mathfrak{F} . For a function $f \in L^\infty(\mathbb{C}^n)$, the Toeplitz operator $T_f \colon \mathfrak{F} \to \mathfrak{F}$ and the Hankel operator $H_f \colon \mathfrak{F} \to \mathfrak{F}^\perp$ are defined by

$$T_f g = P(fg), \quad g \in \mathfrak{F},$$
 $H_f g = (I - P)(fg), \quad g \in \mathfrak{F}.$

It is clear that these are bounded operators for every function $f \in L^{\infty}(\mathbb{C}^n)$. Berger and Coburn [1] characterized the functions $f \in L^{\infty}(\mathbb{C}^n)$ for which H_f is compact, and also obtained the result that H_f is compact if and only if $H_{\bar{f}}$ is. In this paper we will give an alternate approach to Berger and Coburn's work. Our method is more elementary and furthermore it also gives the functions $f \in L^{\infty}(\mathbb{C}^n)$ for which T_f is compact. Writing τ_{λ} to denote the translation on \mathbb{C}^n by λ , we will prove that the Hankel operator H_f is compact if and only if $\|f \circ \tau_{\lambda} - P(f \circ \tau_{\lambda})\|_2 \to 0$ as $\|\lambda\| \to \infty$. This result is completely analogous to the author's characterization of the compact Hankel operators on the Bergman spaces of the unit disk [6], and the unit ball and polydisk in \mathbb{C}^n [7]. We will show how this result implies Berger and Coburn's result.

The paper is arranged as follows. In Section 2 we give the preliminaries needed for the rest of the paper. In Section 3 we give the proof of our main result, characterizations of compact Hankel and Toeplitz operators. In Section 4 we obtain Berger and Coburn's result that H_f is compact if and only if $H_{\bar{f}}$ is. In Section 5 we consider Hankel operators with bounded continuous symbols. For a subclass of these Hankel operators we formulate a very useful criterium for compactness. As an immediate consequence we obtain another proof of Berger and Coburn's result mentioned above. In Section 6

Received December 21, 1988. Revision received January 3, 1991. Michigan Math. J. 39 (1992).