On Consecutive kth Power Residues, II

ADOLF HILDEBRAND

1. Introduction

Brauer [1] proved that for any positive integers k and l and every sufficiently large prime p there exists a positive integer r such that the numbers r, r+1, ..., r+l-1 are all kth power residues modulo p. Let r(k, l, p) be the least such integer and define

$$\Lambda(k,l) = \limsup_{p \to \infty} r(k,l,p).$$

The function $\Lambda(k, l)$ has been studied by a number of authors. For example, it is known ([4], [8]) that $\Lambda(k, l) = \infty$ for $l \ge 4$ and all $k \ge 2$ and for l = 3 and all even values of k. On the other hand, using machine computation it was shown that $\Lambda(k, 2)$ is finite for every $k \le 7$, and it has been conjectured [2] that the same is true for k > 7 (see [7] for further references). In [7] we proved this conjecture for the case when k is a prime number. Here we shall prove the conjecture in full.

THEOREM 1. $\Lambda(k, 2) < \infty$ for all positive integers k.

Stated differently, the assertion of the theorem is that, given a positive integer k, there exists a constant $c_0(k)$ such that for every sufficiently large prime p there exists a pair (r, r+1) of consecutive kth power residues modulo p satisfying $1 \le r \le c_0(k)$.

As in [7], we shall deduce Theorem 1 from a slightly more general result concerning completely multiplicative functions whose values are kth roots of unity. Let F_k denote the set of all such functions; that is,

$$F_k = \{ f : \mathbb{N} \to \mathbb{C} : f^k \equiv 1, f(nm) = f(n)f(m) \ (n, m \in \mathbb{N}) \}.$$

THEOREM 2. Let k be a positive integer. There exists a constant $c_0(k)$ such that for any function $f \in F_k$ there exists a positive integer $n \le c_0(k)$ with f(n) = f(n+1) = 1.

The deduction of Theorem 1 from Theorem 2 is easy and will be given at the end of this section. The proof of Theorem 2 is based on the same ideas as

Received March 28, 1990.

The author was supported by an NSF grant.

Michigan Math. J. 38 (1991).