Boundary Density and the Green Function

JANG-MEI WU

In this note, we generalize the following theorem on level curves of conformal mappings to domains in \mathbb{R}^m , $m \ge 2$.

THEOREM A. Let Ω be a simply connected domain in \mathbf{R}^2 ($\Omega \neq \mathbf{R}^2$), let f be a conformal mapping from Ω onto the unit disk |z| < 1, and let Γ be any line or circle on the plane. Then there exists an absolute constant p_0 (1 < $p_0 < 2$) such that

$$(0.1) \qquad \int_{\Gamma \cap \Omega} |f'(z)|^p |dz| \le C(p,\Omega) < \infty$$

for $1 \le p \le p_0$.

For the development of the theorem, see [4], [5], [7], and [8]. Recently, Baernstein [1] constructed Ω , f, and Γ as in Theorem A, so that

$$\int_{\Gamma \cap \Omega} |f'(z)|^{2-\delta} |dz| = \infty$$

for some $\delta > 0$.

Suppose that G is the Green function on Ω with pole at $f^{-1}(0)$. It follows from (0.1) that

(0.2)
$$\int_{\Gamma \cap \Omega} |\nabla G(z)|^p |dz| \le C(p,\Omega) \operatorname{dist}(0,f(\Gamma))^{-p}.$$

We extend (0.2) to the following.

THEOREM. Suppose that Ω is a domain in \mathbf{R}^m ($m \ge 2$) that satisfies the (m-1)-dimensional density condition ((m-1)DC). Let P be a fixed point in Ω , G the Green function of Ω with pole at P, and Γ an (m-1)-dimensional hyperplane with $P \notin \Gamma$. Then there exists a constant $p_0 > 1$ depending on the (m-1)DC constant, so that if $1 \le p \le p_0$ then

$$(0.3) \qquad \int_{\Gamma \cap \Omega} |\nabla G(x)|^p d\sigma(x) < B,$$

where $d\sigma$ is the (m-1)-dimensional measure on Γ and B is a constant depending on p, the (m-1)DC constant, $dist(P, \partial\Omega)$, and $dist(P, \Gamma)$.

Received January 18, 1990.

The author was partially supported by the National Science Foundation. Michigan Math. J. 38 (1991).