Boundary Behavior of Certain Holomorphic Maps

H. ALEXANDER

1. Introduction

Our point of departure is the recent work of Alinhac, Baouendi, and Rothschild [3] and of Bell and Lempert [4] on the boundary behavior of holomorphic maps from \mathbb{C} to \mathbb{C}^n . In the scalar case n=1, the results may be formulated as follows. Let H_r denote the intersection of the open disk of radius r centered at the origin with the upper half-plane, and let σ_r denote the closed semi-circle in its boundary.

THEOREM. Let Γ be a smooth Jordan arc in \mathbb{C} . Let f be a holomorphic function on H_r such that the cluster set of f along [-r, r] is contained in Γ . Then

- (a1) f extends to be continuous on (-r, r),
- (a2) f is smooth on $(-r, r) \cup H_r$, and
- (b) f has finite order at each point of (-r, r) unless f is constant.

Part (a1) is not explicitly stated in [4] but follows from the argument there because the classical reflection principle yields such continuity. The meaning of "smoothness" is \mathbb{C}^{∞} for f and Γ in [4], while [3] treats f in Lipschitz spaces and Γ being \mathbb{C}^k with $k \ge 2$. In the former case, "finite order" at x simply means that some derivative $f^{(N)}(x) \ne 0$; in the latter case it means not of infinite order, that is, $f(z) - f(x) = O((z - x)^N)$ does not hold for every N.

The main objective in the cited work is to handle higher-dimensional mappings where Γ is replaced by a totally real manifold. The first results of this type were due to Chirka [6]; previous work has also been done by Rosay [12] and Pinchuk and Khasanov [10]. However, according to [3], the unique continuation property (b) is new even in the scalar case. It is proved in [3] and [4] by PDE methods. We first consider the case when Γ is not assumed to be smooth but is just a (continuous) Jordan arc. It turns out that a sort of finiteness (b1) still holds, with no assumption of smoothness.

Received February 6, 1990.

The author was supported in part by a grant from the National Science Foundation. Michigan Math. J. 38 (1991).